
Universidad del Salvador

Facultad de Arte y Arquitectura

Licenciatura en Arte y Diseño Digital

Análisis del Buddy System en un Equipo de

Diseño

Ética Profesional

Autor:

Matias Abarquez Mendoza

Profesor:

Alejandro Brianza

22/07/2022

1

Tabla de Contenido

Introducción…………………………………………………………………………3

Tema y recorte........………………………………………..….…………...3

Interés personal……………………………………………….……..……..4

Problematización……………………………………………………………5

Pregunta de investigación e hipótesis……………………….......7

Relevancia…………………………………………………………………..7

Profesional………………………………………………………......7

Social………………………………………………………………...8

Objetivos……………………………………………...……………………..9

Desarrollo…………………………………………………..………………………10

Marco Teórico…………………………………………….……………….10

Metodología………………………………………….…………………….40

Universo y Muestra……………………………………………………….40

Estructura del dato………………………………………………..40

Unidad de análisis………………………….……………..40

Variables…………………………………………….……..40

Valores……………………………………...……….……..40

Indicadores……………………………………….………..41

Instrumento de recolección de datos vacío…………………………….41

Instrumento de recolección de datos con indicadores [manual de

uso]……………………………………………………………….………..……….43

Análisis de datos………………………………………………..…………43

Pieza de Diseño..………………………………………………..………………..50

Proceso de diseño………………………………..……………………….51

2

Cómo el análisis de los datos impactó en el diseño…………………..52

Documentación del paso a paso………………………………………...53

Conclusiones………………………………………………………………………54

Respecto de la pregunta – hipótesis……………………………………54

Respecto de los objetivos………………………………………………..54

Postura crítica sobre la investigación teórica…………………………..54

Postura crítica sobre el diseño de la pieza……………………………..54

Propuestas a futuro……………………………………………………….55

Bibliografía………………..…………………………………………………….....56

3

Introducción

Una problemática que concierne a los nuevos profesionales a la hora

de entrar a un equipo, es la adaptación al mismo, la desorientación que

puede provocarle no saber a quién acudir, hacia dónde dirigirse en busca de

respuestas. Si a esto le añadimos que debido a la pandemia del COVID-19

se empezó a implementar el trabajo remoto de forma permanente, la

interacción social dejó de ser un hecho y un ingresante a la empresa tendrá

estrictamente contacto virtual, tomando más relevancia la necesidad de un

apoyo incondicional para la orientación. Es por eso que todos los equipos

deberían implementar lo que se llama Buddy System.

Este sistema plantea el emparejamiento de una persona del equipo

con el reciente ingresado. Para que lleve una mejor resolución frente a los

problemas de ser nuevo, el buddy tiene que tener conocimiento del contexto

general de la empresa. El líder del proyecto es quien tiene que ser el

encargado de acomodar este emparejamiento para un resultado óptimo.

La implementación de esta modalidad en un equipo de diseño

liderado por un líder de proyecto, facilita la inserción de nuevos profesionales

de una manera efectiva, eficiente y de mejor respuesta frente a los

problemas reales que tiene que afrontar una persona en una nueva

empresa. Así mismo, quien hace de buddy consigue una evolución personal

en diversos aspectos.

En muchas empresas, generalmente de tamaño considerable, suelen

usar esta metodología del Buddy System ya que hay mucho por aprender y

tienen la necesidad de que cada nuevo profesional se adapte lo más

rápidamente posible. Sin embargo, en el presente trabajo se analizará una

empresa en particular que se llama MercadoLibre. 

Esta compañía se fundó en Argentina a principios del año 2000. Nació

como una empresa de venta y compra de artículos, aunque actualmente

tiene otros servicios, debido al avance tecnológico, como recarga de

celulares, recarga de tarjeta de transporte, transferencias monetarias, entre

otros. A medida que avanza la tecnología se van agregando nuevos,

dividiendo internamente las unidades de la empresa. Actualmente se

4

encuentra en países económicamente fuertes como Argentina, Brasil,

Uruguay, México, Chile. Si bien los mencionados anteriormente son los que

pisan con fuerza, MercadoLibre sigue expandiéndose.

Resumiendo, se tomará MercadoLibre como estudio de caso a

analizar. Ubicándonos en tiempo, la presente tesis se centrará desde la

existencia de la pandemia de COVID-19 que se expandió al mundo en el año

2020 hasta el año actual, 2022, ya que la pandemia aún no ha terminado.

Por último, y no menos importante, nos ubicamos en Latinoamérica como

lugar geográfico.

Mi interés por el tema nace a partir de mis dos experiencias en las

cuales tuve el proceso de inducción y a su vez me asignaron un buddy –

compañero en español– sin entender cuál era su finalidad.

En el primer caso en el cual se me asignó un buddy, recién arrancaba

la carrera de programador y entraba a una empresa multinacional, sin saber

toda la burocracia que tiene por detrás –diferente a mi primer trabajo como

pasante en una Embajada–.

El rol que ocupaba mi buddy era diferente al mío, sin embargo, era del

mismo equipo. Ella se especializaba en atención al público y capacitar a los

clientes de la aplicación web que desarrollábamos y yo me encargaba del

área de desarrollo. A su vez un compañero –hoy en día amigo–, también

ingresante, le asignaron un buddy que era desarrollador. Yo veía como su

buddy, quien no era del equipo, lo ayudaba a configurar toda la computadora

para poder trabajar mientras que mi buddy, que sí era de mi equipo, ni me

dirigía la palabra. Debido a lo anterior, le pedía ayuda a mi compañero de

trabajo quién tenía el mismo rol que el mío. En particular puedo decir que fue

una experiencia negativa y hasta aquí creía que el término buddy era

simplemente una persona impuesta por alguien porque así se manejaba la

empresa.

Hablando de mi segunda experiencia a través de un buddy, fue en la

empresa en la que me encuentro actualmente –siendo el año 2022–. Al

haber tenido una pésima experiencia, pensé que iba a tener los mismos

resultados. Una persona impuesta por alguien para que me ayude pero que

no tenga tiempo de hacerlo o no quiera hacerlo por diversas cuestiones.

5

Puedo decir que la empresa tuvo otros valores, el equipo se comportó

diferente desde el principio, una tranquilidad y un positivismo que no había

encontrado en los 7 meses en que estuve en aquel equipo donde tuve un

buddy que no cumplía la función como tal.

En contraste, aquí supe posteriormente que quién decide quién va a

ser el buddy del nuevo profesional ingresante es elegido por el líder de

proyecto del equipo.

En el primer caso, había preguntado cómo se había elegido el tema

del buddy, un amigo me había comentado que se debía a habilidades

blandas. Básicamente, relaciones personales –lo cual no me convencía

tampoco porque no me hablaba–.

Puedo decir que fue una experiencia totalmente positiva ya que mi

buddy era de mi propio rol, tuve meses en el que el aprendizaje fue en

continuo crecimiento, tanto a nivel conocimiento de la empresa como

también a nivel estructural en la organización de los proyectos. No quiero

extenderme y explicar cuestiones técnicas en las cuales me ayudó en mi

recorrido desde el día uno y se preocupó de poder dedicarme tiempo.

Culminando esta experiencia positiva, está demás decir que pude entender a

mi compañero –de la primera experiencia– quien tuvo a un buddy del mismo

rol a pesar de ser de diferente equipo.

El onboarding –también llamado inducción–, es el proceso por el cual

un nuevo profesional se adapta a su nuevo espacio de trabajo, reconoce las

formas y las herramientas en las que trabaja su nuevo equipo, así como las

normas generales de la empresa. A su vez, tiene que haber una persona

capacitada que ayude en esta adaptación.

El proceso de onboarding perdura por un breve período de tiempo,

mínimamente un mes, para que la persona pueda desenvolverse con

facilidad en su entorno laboral.

Laurie Mullins (2005) afirmó que el programa de inducción debería ser

preparado para ayudar a los nuevos miembros del equipo a familiarizarse

con el nuevo ambiente, prepararlos en su nuevo puesto de trabajo y

establecer buenas relaciones interpersonales con sus pares. La inducción

6

debería ser más allá de un contrato psicológico en pleno proceso de

reclutamiento y selección.

Al mismo tiempo dice que es importante recordar que la gente no

absorbe mucha información de una vez, particularmente puede ser una

situación rara e incómoda. El programa de inducción debería ser planeado

cuidadosamente e implementado en un tiempo razonable. Implicará la

cooperación de managers, supervisores y colegas. Dentro de un programa

de inducción efectivo son recursos de ayuda la información sobre inducción,

presentaciones y un mentor que actúe como buddy, para guiar y ayudar al

nuevo miembro del equipo (p.817).

Lo explicado anteriormente por el autor, es parte del proceso de

reclutamiento y selección del candidato. Si bien es una excelente definición

de cómo sería el proceso y las particularidades que el buddy debería

enfrentar, me encuentro en posición de alejarme de la postura de considerar

al buddy como un mentor.

¿A qué se debe que no consideraría a un buddy como un mentor?

Porque son dos términos que, si bien pueden confundirse, cada uno tiene un

objetivo diferente.

Un mentor –también llamado tutor en español– es una persona más

experimentada, confiable, con más conocimiento que guía a otra de menos

experiencia y menos conocimiento. La guía y la dirección a la que apuntan

es en un aspecto que el mentor tuvo éxito. Así, el mentor se encuentra

calificado para replicar el mismo o más éxito del que tuvo a otra persona. A

la persona que el mentor acepta para guiar y dirigir se le denomina mentee.

La relación entre mentor y mentee, como también al proceso de guiar

y dirigir se denomina mentoría –sólo en español, en inglés tienen dos

palabras diferentes. También suele escucharse como tutoría– (Osiri, 2020).

Cada equipo busca la mejor manera de integrar a un nuevo empleado

a su forma de trabajo, estableciendo las pautas necesarias para que lleve a

cabo sus responsabilidades. Sin embargo, todo empleado puede estar

7

desorientado ya que no tiene a quien recurrir permanentemente y cada

pregunta puede ser de diverso contenido y tendrá que ir de persona en

persona hasta dar con la correcta. Por este mismo motivo es que se creó el

Buddy System, no sólo para orientar al nuevo integrante del equipo sino

también para prevenir futuros errores y saber a quién acudir. Seguramente

habrá alguien que decida quién es la pareja del nuevo profesional. Se

pueden pensar diferentes variables a la hora de elegir al buddy. Puede que

quien decida lo haga por sorteo entre los miembros, que la persona elegida

sea porque tiene habilidades para desarrollarse socialmente, o alguien que

necesite desarrollar sus habilidades comunicacionales, también hay gente

que lo hace de manera voluntaria.

Hay una persona que es la más capacitada para realizar este trabajo

y debe hacerlo como una responsabilidad crítica, el Project Leader [PL]. Esta

persona tiene la misión de liderar el proyecto en sí, saber sobre las

cualidades de cada uno y qué habilidades mejorar. Por lo que cumple un

factor determinante a la hora de elegir un buddy por ser quien evalúa a cada

integrante del equipo. Es aquí donde yace la siguiente pregunta:

¿De qué manera implementar el Buddy System de una manera

eficiente y eficaz?

Para implementar el Buddy System de una manera eficiente y eficaz,

en la cual una persona es emparejada con otra, el buddy requiere que tenga

el mismo rol y esté en el mismo equipo. Esto facilita la capacitación,

puntualmente en las responsabilidades que tiene el ingresante en el día a

día y no está únicamente limitado a las generalidades de la empresa.

El presente informe aporta en el ámbito profesional una correcta

manera de realizar el onboarding de un nuevo integrante del equipo a través

del Buddy System. Se toma en consideración las variables con las que

contará el buddy que posteriormente será designado como tal al nuevo

profesional. Estas consideraciones incluyen desde las habilidades blandas –

también llamadas soft skills en inglés– para poder socializar, hasta

habilidades técnicas que el rol del nuevo ingresante del equipo requiera,

8

para así poder llevar a cabo un ida y vuelta sobre cómo está organizado la

estructura de los proyectos internos –frameworks, librerías, IDE–. El rol del

buddy juega un papel muy importante a la hora de hacer transferencia de

conocimientos hacia el nuevo profesional.

Por otro lado, en el ámbito de lo social, se aporta lo que un nuevo

profesional del área de diseño tiende a esperar en el día a día de su buddy –

en caso que la empresa implemente este sistema– con respecto a las tareas

y los conocimientos necesarios para adaptarse a su nuevo equipo,

añadiendo que hoy en día el trabajo remoto es una realidad dentro de una

organización burocrática y ya no solo los freelancers trabajan de esa

manera. El ingresante conocerá diariamente cómo es el mecanismo dentro

del ecosistema empresarial, las pautas que hay que tener en cuenta, las

consideraciones –qué se puede o no hacer con la herramienta de trabajo

que es la computadora–, cómo se relacionan entre sí los diversos equipos

que puedan coexistir, el flujo del equipo designado.

9

Objetivos

Teóricos

General. Emparejar un integrante del equipo y el nuevo integrante

con el mismo rol.

Específico.

1. Analizar el rol del nuevo integrante del equipo.

2. Analizar los integrantes del equipo que tengan el mismo rol que

el nuevo profesional.

3. Determinar a un integrante del equipo para capacitar al nuevo

profesional que ingresa.

Prácticos

General. Diseñar un video audiovisual sobre el beneficio de

implementar el Buddy System de una manera eficiente, eficaz y

concisa.

Específico.

1. Demostrar una solución fallida sin incluir un emparejamiento de

rol ni equipo.

2. Demostrar una solución parcial sin incluir emparejamiento de

rol.

3. Demostrar una solución parcial sin incluir emparejamiento de

equipo.

4. Demostrar la solución definitiva y efectiva incluyendo

emparejamiento por rol y equipo.

10

Desarrollo

Actualmente, la empresa afirma que su ecosistema:

Está integrado por dos grandes unidades de negocio:  el ecommerce

y las fintech. Dentro de estos dos grandes mundos, Mercado Libre y

Mercado Pago, se agrupan distintas empresas orientadas a mejorar la

experiencia del usuario: Mercado Envíos, Créditos, Mercado Shops,

Ads y VIS (MercadoLibre, 2022).

Mercado Libre es el marketplace tal como lo conocemos todos. Es el

servicio de compra y venta de artículos que opera a nivel latinoamérica.

Por otro lado, la unidad de Mercado Envíos es la encargada de

“brindar soluciones de logística para mejorar la experiencia a millones de

vendedores y compradores” (MercadoLibre, 2022). Aquí se puede hacer una

distinción de los transportes de mercadería, recientemente en algunos

países se está empezando a utilizar flota de transporte eléctrico a favor del

cuidado ambiental.

Si hablamos de Mercado Libre Vehículos, Inmuebles, Servicios [VIS],

estamos haciendo mención a la unidad que están conectados al marketplace

–Mercado Libre– "pero tienen un modelo de negocio diferente al resto de la

plataforma: son categorías no transaccionales, es decir, que la compra-venta

se completa fuera de la plataforma." (MercadoLibre, 2022).

Por el lado de la fintech1, Mercado Pago, se puede decir que “brinda

la cuenta digital más completa para aquellas empresas, emprendimientos o

personas físicas que desean gestionar su dinero de manera segura, simple y

cómoda con una gran variedad de posibilidades” (MercadoLibre, 2022) en

1 “Es un sector integrado por empresas que utilizan la tecnología para mejorar o automatizar

los servicios y procesos financieros”. Fuente: Maestre, Raúl Jaime (11 de marzo de 2022).

Qué es fintech y por qué es el futuro de las finanzas. iebschool. Recuperado el 04 de julio

de 2022 de https://www.iebschool.com/blog/que-es-fintech-finanzas/

https://www.iebschool.com/blog/que-es-fintech-finanzas/

11

los países que se encuentran habilitados, ya que en no todos es posible usar

todos los servicios que se brindan por parte de la empresa. Un ejemplo

concreto es la reciente utilización de criptomonedas, actualmente sólo se

encuentra en Brasil.

En cuanto a Mercado Crédito, es una plataforma crediticia que "otorga

préstamos y soluciones financieras a usuarios de los productos de la

compañía." (MercadoLibre, 2022). Se basa en un score –puntaje– propio del

historial de ventas y compras dentro de la unidad de Mercado Pago para

poder evaluar si el usuario está apto para conseguir un préstamo.

La unidad de Mercado Shops permite “crear una tienda online

propia de manera simple y ágil, con todos los beneficios del ecosistema de

Mercado Libre.” (MercadoLibre, 2022). Esto implica facilitar que aquella

persona, empresa PyMEs que quieran utilizar una tienda online del estilo de

MercadoLibre puedan crearla para su propio beneficio.

Por último, se encuentra Mercado Ads, esta unidad se encarga del

desarrollo de “soluciones de publicidad dentro del e-commerce líder en

América Latina. Permite a vendedores y marcas aprovechar el alto volumen

de visitas que tiene Mercado Libre para enviar tráfico” (MercadoLibre, 2022).

Implementar un Buddy System en el lugar de trabajo es sencillo.

Algunos de los pasos son los siguientes.

Decidir una estructura. Escribir el propósito del programa y el objetivo

para la empresa y los empleados. Anotar el período de tiempo de cada

emparejamiento y cualquier regla que aplique en las relaciones con el buddy.

Establecer las expectativas. Establecer tareas específicas y

expectativas en el Buddy System. Definiendo las expectativas tan claras

como sea posible, se puede seleccionar a la gente correcta para el programa

y seguir con el proceso.

Encontrar a los participantes. Encontrar voluntarios para asistir en el

reclutado de nuevos empleados. Es importante tener voluntarios de múltiples

12

departamentos porque limitarlo al sistema de recursos humanos no es lo

ideal. El Buddy System es más efectivo cuando los buddies tienen un

propósito general y pueden compartir sus tareas diarias con el nuevo

empleado. En caso de no encontrar voluntarios, encontrar la forma de

incentivar el programa.

Emparejar al nuevo empleado. Preguntar al nuevo profesional

algunos temas para que ayuden a emparejarlos con otros que tienen

objetivos y personalidades similares (Indeed, s.f.).

Llegado a este punto, algunos autores indican como siguiente paso el

hecho de crear una checklist –una lista de items que vas tildando a menudo

que se completen– para llevar el día a día con el nuevo profesional que te

asignaron. Sin embargo, no estoy de acuerdo en seguir una pauta

estructurada, aunque puede ser de ayuda. Basada en mi experiencia, el

hecho de tener una checklist es opcional y puede ser de ayuda, aunque no

es imprescindible. Es por ello la razón de que no se agregó como un paso,

pero se hace mención para quien lo necesite.

Las siguientes son las características a tener en cuenta para que una

persona pueda ser elegida como buddy al utilizar el Buddy System.

Destacada performance de trabajo. El buddy tiene que ser un buen

ejemplo y haberse destacado en la performance de su trabajo en el pasado y

en el presente.

Habilidades en la nueva posición. El buddy tuvo que tener la posición

en el pasado o realizar similares responsabilidades.

Tener buenas habilidades de comunicación. Es importante que el

nuevo empleado sea emparejado con alguien que sepa comunicarse

efectivamente y pueda escuchar activamente entendiendo lo que el nuevo

profesional necesita.

No ser un manager. El propósito del Buddy System es emparejar

personas con quienes tengan similares roles, así como un supervisor no

sería un buen buddy.

13

Sea accesible. Es importante que el buddy tenga tiempo disponible

para asistir a alguien mientras hace sus responsabilidades.

Voluntad para participar. Está bien que la gente rechace la

oportunidad de ser un buddy. Si están forzados a participar, el nuevo

empleado es visto como una carga al buddy, y esto puede tener

consecuencias indeseadas.

Los buddies no significa que sean supervisores o mentores.

Algunos puntos a destacar en el programa son los siguientes.

Los buddies se suponen que no son expertos. Está bien que ellos no

sepan una respuesta y necesiten redirigir la pregunta a alguien más.

Las relaciones no son inmediatas. Algunos nuevos empleados no

desarrollarán relaciones inmediatamente. Hay que ser pacientes.

Tomarlo con calma. No abrumar a los nuevos empleados con

información y procesos. Hacerlo de a poco, en una transición continua en

sus roles.

Tener tiempo para escuchar. Escuchar a los nuevos empleados y

aplicar lo que dicen para ajustar lo necesario en el futuro. Esto incluye

aprender a cómo comunicarse efectivamente y descubrir qué motiva al

nuevo profesional.

Registrar nuevas ideas. Parte del programa es aprender de lo que

brinden los nuevos empleados, así el buddy debería tomar nota acerca de

los tips e ideas para mejorar la empresa.

Mantenerse positivo. Los buddies no deberían criticar a sus

supervisores o la cultura de la compañía. Haciendo eso pueden hacer que el

nuevo empleado se sienta incómodo y se pregunte si aceptaron el trabajo

correcto (Indeed, s.f.).

El Buddy System beneficia el entorno de trabajo de diferentes

maneras. Cada empleador lo implementa con diferentes objetivos. Algunas

de las maneras que ayuda el Buddy System a la compañía pueden ser las

siguientes.

Bienvenida a nuevos empleados. La primera semana en un nuevo

lugar de trabajo es de puros nervios. Los nuevos profesionales contratados

14

están en un lugar desconocido y no saben nada de sus compañeros.

Todavía están aprendiendo que se espera de ellos y pueden cometer

algunos errores mientras se adecúan a su nueva posición.

Emparejando a los nuevos empleados con aquellos que ya llevan un

tiempo en la empresa puede ayudarlos a sentirse más aliviados, y pueden

aprender los procesos y cómo funciona la empresa más rápidamente. El

Buddy System puede ayudarlos a asimilar la cultura de la compañía dejando

que pregunten y construyendo relaciones interpersonales. Los nuevos

contratados que reciben un buddy sienten que son parte de la comunidad

más rápido.

Incrementar la confianza del empleado. Sea que un nuevo empleado

tenga experiencia en su posición o no, cada cambio de trabajo requiere una

curva de aprendizaje. Tu empresa no hará nada de la misma manera a lo

que el nuevo profesional está acostumbrado, de esta forma el buddy puede

aplicar su experiencia pasada como nuevo empleado y las habilidades. Esto

construye confianza más rápido que dejar al empleado a su merced y que

descubra las cosas por su cuenta.

El feedback constructivo es mejor recibido si viene de un buddy que

de un superior. Los nuevos empleados a menudo temen que, si preguntan

demasiado o reciben muchas críticas de cargos superiores, se sientan que

no encajan en la empresa. La crítica es menos formal si viene de un buddy,

y los nuevos empleados pueden relacionarse a las anécdotas que el buddy

comparte acerca de cómo encontraron éxito en sus roles.

Incremento de productividad. Los nuevos empleados son más lentos

en sus puestos porque todavía están aprendiendo. Es normal esperar que

los nuevos contratados no sean tan productivos como los que ya tienen

experiencia en la empresa. Tener un buddy impulsa a los nuevos a mejorar

la curva de aprendizaje e incrementar la productividad.

Si se asegura que los empleados tengan el apoyo necesario

utilizando el Buddy System, estarán más felices, con más confianza en su

trabajo y más productivos. Además, estarán más dispuestos a compartir sus

ideas ya que quizá no estarán cómodos compartiéndolas con sus jefes

debido a la timidez. Las fuertes relaciones de trabajo ayudan a la

15

organización a tener una mejor colaboración y a una comunicación más

efectiva.

Mejora de retención de empleados. El costo de adquirir nuevos

empleados a menudo es más costoso que el hecho de retener a uno. Los

empresarios intentan retener empleados ofreciendo salarios competitivos,

paquetes de beneficios, oportunidades de carrera y entrenamiento. El Buddy

System es una manera de proveer entrenamiento mientras incorporan a los

empleados a la cultura corporativa. Cuando la gente se sienta cómoda con

sus compañeros de trabajo, tienden menos a dejar la empresa.

Ganar visión e innovación. El intercambio mutuo de ideas puede crear

oportunidades de innovación y creatividad. Los manager acceden a nuevos

tips, procesos y procedimientos que antes no consideraban (Indeed, s.f.).

Como afirma Choudhary de Zavvy, la principal diferencia entre mentor

y buddy radica en que el buddy es quien te acompaña en los primeros pasos

en tu llegada al equipo, mientras que los mentores son personas

experimentadas en el mismo puesto quien te ayudará a corto, mediano y

largo plazo en tu carrera profesional (Choudhary, 2021). Es decir, se basa en

mejorar tus habilidades técnicas para que a futuro progreses con respecto a

tu seniority.

Ahora, en relación al Buddy System, el PL tiene que evaluar en qué

puesto –rol– se va a desempeñar el nuevo profesional que formará parte del

equipo. Ya que así podrá asignar un buddy que tenga el mismo rol y puedan

compartir conocimientos. Si es alguien que ya tiene sus años dentro del

equipo –ni hablar dentro de la empresa–, puede ser un mentor para la

carrera profesional al mismo tiempo que es buddy.

Para hacer el correspondiente análisis de porqué es importante un

Buddy System se necesitan aclarar los aspectos en la estructura de un

equipo de trabajo correspondiente a una aplicación web.

Para tener un buen equipo de desarrollo, COR (s.f.) dice que hay que

considerar los siguientes factores:

Cubrir todos los roles y habilidades. [...] Cada rol tiene sus

propias responsabilidades y habilidades específicas esenciales para

16

que un proyecto tenga éxito. Sin cubrir todos esos roles, el equipo se

arriesga a sufrir retrasos, a la baja calidad y a los clientes

insatisfechos.

Comunica los objetivos y los indicadores claves de rendimiento

–o KPIs, por sus siglas en inglés–. [...] Los objetivos deberían ser

específicos, medibles, realizables, realistas y cronometrados.

Establecer KPIs para el equipo y para los individuos también debería

ser una forma eficaz de buscar el mejor rendimiento en tu equipo.

Contrata un talento diverso. […] Al buscar talento de distintos

orígenes y formaciones, ayudarás a conseguir diferentes ideas,

perspectivas y valores para el equipo. […]

Haz que la información esté disponible. Para que entregues los

proyectos a tiempo, debes asegurarte de que los miembros de tu

equipo tengan todas las herramientas necesarias para acceder a la

información. Hacer que la información esté disponible implica una

mayor transparencia en el progreso de tu equipo, y les permite a los

miembros ver dónde están habiendo avances y dónde habría que

mejorar las cosas. […]

Automatiza procesos. La automatización significa que los

miembros del equipo tendrán más tiempo para invertir en actividades

facturables, y eso implica avances más rápidos en los proyectos para

poder trabajar en otros. […] Deberías darle a tu equipo las

herramientas para automatizar todas esas tareas administrativas que

consumen tanto tiempo. Esto también te ayudará a cuidar del

bienestar de los miembros de tu equipo, ya que liberarás su tiempo.

Un proyecto tendrá diferentes roles en el equipo de desarrollo.

Suponiendo que fuese de una aplicación web y que sea la mínima cantidad

de integrantes, debería tener un frontend developer, un backend developer,

un PL o PM y un TL. Hay ocasiones en que el frontend developer y el

backend developer es la misma persona, llamado FullStack Developer,

aunque actualmente se encuentran separados por tema de tiempo, de

preparación.

17

El diseñador UX tiene como objetivo visualizar al “usuario final

interactuando con el producto, y hacen que este sea fácil de utilizar y se

enfocan en todos los aspectos de la experiencia: usabilidad, funcionalidad y

rendimiento.” (COR, s.f.).

El diseñador UI “se enfoca principalmente en el software y en cómo

se ve y se siente para el usuario. Necesita que sea intuitivo y directo.” (COR,

s.f.).

Ambos diseñadores se complementan “ya que son los que defienden

las necesidades del usuario”. Además, deben contar “con un estilo creativo y

un fuerte enfoque en el diseño. Deben ser analíticos y pensar con

originalidad.” (COR, s.f.). Muchas veces estas dos especialidades se

concentran en una sola persona. Pueden formar parte del equipo propio de

IT, o pueden tener su propio equipo de diseño, aunque tendrán que

interactuar con el equipo de desarrollo de software para recibir feedback y

entender qué se puede y qué no aplicar.

Se puede definir como Project Leader –o Líder de Proyecto en

español– [PL] un profesional que lidera y se asegura que el proyecto

progrese. El PL se compromete con el equipo, lo motiva, y se encarga de lo

que necesiten y de mantener un ambiente de trabajo relajado y productivo

(Indeed Editorial Team, 2020). Este rol es uno de los más importantes dentro

del equipo, ya que se encarga de ser la cara visible frente a cualquier

problema que surja dentro del equipo y se encarga de tomar las decisiones

con respecto a los temas más importantes (Cole, Roby & Barker, Stephen,

2009).

El Project Manager [PM] –manager del proyecto– tiene una sutil

diferencia con respecto al PL. El rol de PM se encarga de llevar a cabo las

tareas del proyecto de manera ordenada, se centra en el proyecto en sí

mientras que el PL se encarga de la parte humana de los miembros del

equipo. Es quien coordina el proyecto con las reuniones, las tareas, y lo

esencial para que un proyecto tenga éxito. No quiere decir que un PL no

pueda hacer las tareas del PM, pero en este último caso está más

involucrado con la parte del proyecto.

18

Según la experiencia de Boujon (2019) cada organización entiende el

rol de Technical Leader [TL] –Líder Técnico– “dependiendo de diversos

factores, como puede ser la madurez de la organización, las necesidades

puntuales de la misma, la dinámica de trabajo y la cultura organizacional”.

En líneas generales define a un TL como aquél que “debe tener buenos

skills técnicos, debe contar con experiencia en el desarrollo de software,

pero no necesariamente debe ser el mejor desarrollador.”. Adicionalmente

agrega que cualquier líder debe contar con habilidades blandas –soft skills–

.

Entre los soft skills más destacados, Boujon (2019) explica que el TL

tiene que comprender “lo que le sucede al equipo y brindarle ayuda o

simplemente prestar el oído, genera empatía y hace que la dinámica de

trabajo en el día a día simplemente fluya”.

Además de empatía, el TL tiene que generar motivación a los

integrantes del equipo, al respecto Boujon (2019) explica que “darles la

libertad y el espacio a la hora de implementar soluciones, hará que ellos se

sientan comprometidos y valorados”.

Un punto crucial es el hecho de la comunicación, el mismo autor

afirma que tiene que hacer la difícil tarea de explicarle a los desarrolladores,

y que entiendan, cómo va el proyecto, en qué punto están y cuáles son las

expectativas del cliente. Más aún, tiene que tener la capacidad de poder

comunicarse con el cliente, ser el receptor de cada mensaje y poder

transmitirlo a quien corresponda (Boujon, 2019).

Otra característica destacable que tiene que tener un buen TL, Boujon

(2019) afirma que debe poseer visión holística, esto hace referencia a “no

solo conocer el software que se está desarrollando, sino también entender

en qué parte del negocio encaja, quienes son sus usuarios y los

stakeholders en general y los objetivos tanto del software como del proyecto

y hacer el esfuerzo por entender cómo todo esto se alinea” para tener

“información a la hora de tomar decisiones, identificar los riesgos, tratar de

allanar el camino lo máximo posible para evitar trabas y pérdidas de tiempo”.

Esto de tomar decisiones tiene que ver con evaluar la escalabilidad del

19

proyecto, la optimización de recursos y cuál sería la mejor manera de

agregar nuevas funcionalidades al proyecto.

Otro punto fundamental tiene que ver con crear conocimiento

colectivo. “Es muy común que haya gente que se especialice en una sola

cosa o que sólo quién desarrolló una funcionalidad específica sabe qué hizo,

cómo lo hizo, cómo funciona y por qué. El problema aquí es ¿Que sucede si

esa persona no está y hay que incorporar cambios?” (Boujon, 2019), para

solucionar esto el TL debe diversificar el conocimiento de los proyectos por

todos los integrantes del equipo.

El último aspecto tiene que ver con la capacidad de gestión. La tarea

del TL será agendar y participar de reuniones con el cliente para definir

objetivos y/o requerimientos. Otros casos definir tareas más específicas,

estimar tiempo, planificar sprints” (Boujon, 2019). Con respecto a lo último,

basado en mi experiencia tengo que discernir un poco. La planificación de

las tareas para un sprint –se hablará más adelante sobre la metodología

scrum que involucra este concepto– las hace todo el equipo, aunque tenga

mucha influencia el TL.

En resumen, el TL “es el nexo entre el negocio y las cuestiones

técnicas, entre los tomadores de decisiones y los desarrolladores” (Boujon,

2019).

Las responsabilidades de un frontend se pueden agrupar en las

siguientes.

El diseño, la creación y el mantenimiento de sitios web. Hay muchas

herramientas para realizar el diseño de un sitio web, incluyendo papel y

lápiz. Incluso es posible tener un diseñador que te provea el diseño. Sin

importar de donde provenga el diseño, para implementarlo se va a tener que

usar HTML, CSS y JavaScript (Myers, 2020).

Mantenerse al tanto de las novedades. [...] Con adaptaciones de

estándares, con nuevas tecnologías, enfoques, técnicas apareciendo todo el

tiempo y al mismo tiempo se eliminan otros aspectos, el ambiente cambia

continuamente. Estar actualizado con estas nuevas herramientas permite

mejorar futuros trabajos y mantener los anteriores (Myers, 2020).

20

Comunicación. Es importante que los desarrolladores estén al tanto

de los requerimientos tanto de clientes como de potenciales usuarios.

Posiblemente también se comunique uno mismo a futuro, por lo que la

documentación y el código legible ayudará en este aspecto (Myers, 2020).

Cabe aclarar que esta habilidad tiene que ver con todos los desarrolladores,

sin importar la especialidad que poseen, es decir esta es una cualidad

importante tanto para el frontend como el backend.

Testeo y validaciones. [...] Cualquiera sea la manera de testear, tener

un plan es el primer tema a definir. Validaciones del lenguaje de marcado

puede ser el primer punto importante, será la primera responsabilidad el

producir lenguaje de marcado válido, ya que no todos los browsers –

navegadores– lo tratan de la misma manera (Myers, 2020).

Un desarrollador backend es quien programa en cualquier lenguaje de

programación para construir lógica de negocio funcional y útil para

aplicaciones web. Adicionalmente, los desarrolladores backend realizan la

conexión entre el frontend y la base de datos (Ramotion, 2021).

Las siguientes son las principales responsabilidades que tiene el

desarrollador backend.

Proveer información a los usuarios. A pesar del diseño de la

aplicación, los consumidores constantemente solicitan información mientras

usan la aplicación (Ramotion, 2021).

Combinar y transformar la información. Cualquier información que

necesite la aplicación puede venir de cualquier fuente, generalmente

referidos como base de datos. En este sentido, el trabajo del desarrollador

backend es localizar información puntual de lo que el usuario está buscando

dentro de todas las bases de datos y solo combinar lo que necesita para

producir la consulta solicitada (Ramotion, 2021).

Una aplicación web es capaz de localizar información exacta

requerida por el usuario. Además, el esqueleto de la tecnología backend es

constantemente optimizable y los desarrolladores a menudo agregan nueva

información o información que es solicitada por los usuarios (Ramotion,

2021).

21

Finalmente, después que el backend recolectó y combinó toda la

información solicitada, debe enviarla al usuario. Sin embargo, el backend

necesita “traductores” para convertir el código puro en lenguaje humano.

Para hacer eso, las APIs y el frontend entran en juego (Ramotion, 2021).

La diferencia entre el desarrollador frontend y el backend radica en

que el desarrollador frontend es el miembro del equipo que más impacto

tiene frente al usuario, a pesar de que no se encuentran tan a menudo.

Mientras que el desarrollador backend se centra en la lógica de la aplicación

y usará diversas herramientas para mantener esa lógica durante la

interacción con el usuario, el desarrollador frontend utiliza un set diferente

para asegurar que la lógica se presente a los usuarios de manera que tenga

sentido y con estética satisfactoria (Myers, 2020).

A la hora de empezar un proyecto de cero hay que considerar que

cada uno es particular para solucionar un problema y no es la misma

tecnología aplicada. De esta manera, el stack tecnológico va a ser dinámico.

A su vez, es necesario tener en consideración diferentes conceptos. Entre

ellos están los que Aulab menciona.

Escalabilidad. La herramienta debe ser usable de la misma

manera tanto cuando el proyecto es pequeño como cuando va a

crecer considerablemente. 

Seguridad. Cuando se comparten herramientas de trabajo y

datos sensibles, el equipo y la empresa tienen que saber trabajar

siempre con absoluta seguridad.

Facilidad de uso. La herramienta tiene que simplificar el trabajo

y no complicarlo.

Portabilidad. El programador Web a menudo trabaja desde

casa o en la oficina, la herramienta tiene que permitir poder trabajar

dinámicamente desde cualquier sitio, garantizando los mismos

estándares de uso.

Funcionalidad. Las herramientas utilizadas deben aportar un

incremento de velocidad.

22

Codementor explica que el pair programming –programación en

pareja– es la práctica de trabajar emparejados en determinadas tareas.

Añade que usualmente, uno se imagina dos desarrolladores en una misma

computadora, compartiendo teclado, pero debido a la popularidad de trabajar

remoto, ahora es posible hacer pair programming desde miles de kilómetros

alejados.

Al utilizar esta práctica, Codementor dice que ambos desarrolladores

emparejados deben compartir pensamientos para que la técnica resulte

efectiva. El éxito radica en la comunicación, así como también en las

habilidades de programar, dos cabezas piensan mejor que una.

Al utilizar esta técnica, Codementor hace mención de los siguientes

beneficios.

Producir mejores soluciones. Implica que es posible detectar

problemas más rápido e identificar potenciales bugs por ambas personas en

vez de una. Además, explica que ambas personas discuten y evalúan acerca

de la solución a implementar.

Por otro lado, Codementor menciona otro beneficio, el hecho de

compartir conocimiento y contexto durante el emparejamiento. Esto quiere

decir, que a la vez que programan es posible entender el contexto del

proyecto por parte de más de una persona del equipo. Debido a lo

anteriormente mencionado, si acaso una persona deja el equipo por la razón

que fuese, hay otro desarrollador que entiende el código. Sin esta técnica,

haría falta tiempo extra y agendar reuniones para poder transmitir

conocimientos sobre lo codeado.

Por último, Codementor menciona el aprendizaje y el desarrollo de

habilidades mutuamente. El beneficio más importante es el hecho de

aprender del otro. Si un desarrollador tiene más seniority que el otro, es la

mejor manera que el de menor seniority aprenda. A su vez, el desarrollador

con más experiencia puede aprender nuevas herramientas que todavía no

haya implementado o aprendido. Todo el mundo es experto en algo y todos

tienen algo que aprender.

Hay tres maneras de emparejamiento, explica el usuario

ayushharwani2011 de GeeksforGeeks (2020).

23

Novato-Novato. Es un emparejamiento que puede ocurrir muy

raramente pero cuando sucede puede tener grandes resultados.

Experto-Novato. Cuando se juntan desarrolladores de esta manera,

se puede obtener resultados significativos. El novato puede aprender

muchas cosas de un experto.

Experto-Experto. Este par es una buena elección para alcanzar

resultados de alta productividad. Ya que ambos son expertos se puede

conseguir resultados eficientes.

La técnica previamente mencionada –pair-programming– va a permitir

al buddy insertar al nuevo empleado –en caso que sea desarrollador– en las

tareas diarias. Lo ayudará a conocer las APIs que tiene el equipo y empezar

a conocer el lenguaje –sea que lo conozca o no–, a familiarizarse cómo

están ordenados por dentro, cómo se realizan las pruebas –más conocido

como testing–, qué frameworks o librerías utilizan, entre otros conocimientos

adquiridos.

Hoy en día los equipos trabajan de manera agile –ágil–, metodologías

que trabajan de esta manera y las más conocidas actualmente, son Kanban

y Scrum. Existen otros métodos además de los dos anteriormente

mencionados, todos ellos tienen cuatro puntos clave.

Esos cuatro puntos son el proceso de diseño iterativo, el compromiso

continuo de los interesados, el objetivo de software confiable y de calidad, y

el desarrollo en ciclos cortos (hasta un mes) que permiten entregar software

regularmente (Leybourn, 2013).

En este sentido, la metodología agile es apropiada en contextos

donde los resultados son desconocidos y donde la entrega de resultados no

puede estar controlada completamente (Leybourn, 2013)

La técnica de Scrum está basada principalmente en equipos y con

roles asociados definidos, eventos, artefactos y reglas. Los tres principales

roles que podemos encontrar en el Scrum son el Product Owner que es

quien representa a los interesados del desarrollo, el Scrum Master que es

quien administra el equipo y el proceso de Scrum, y por último el equipo,

24

cerca de 7 personas que son quienes desarrollan el software (Leybourn,

2013).

Cada proyecto se entrega de manera flexible y de manera iterativa

donde al final de cada sprint de trabajo hay un entregable tangible para

mostrárselo al interesado (Leybourn, 2013)

El siguiente gráfico muestra como es el proceso iterativo de Scrum.

Figura 1. Proceso de Scrum (Leybourn, 2013).

Los siguientes temas de los que se habla corresponden a las

herramientas de trabajo que el buddy debe saber y que posiblemente el

nuevo desarrollador tenga conocimientos. Se explican en general para que

se tenga una noción de lo que puede empezar a hablarse con el buddy en

caso que el nuevo empleado desconozca. A su vez se explican algunas que

el TL es quién debe estar más al tanto en cuanto a profundidad de los temas

–escalabilidad horizontal y vertical, base de datos, patrón de diseño,

microservicios, por nombrar algunas– para lograr una optimización de los

recursos y lograr aplicaciones más eficientes.

Git es el sistema de control de versionado más común utilizado.

Marca los cambios hechos en un archivo, así se puede tener registro de lo

que se hizo, y se puede revertir cambios a versiones específicas siempre

que necesites. A su vez, Git provee colaboración más fácil, permitiendo

25

múltiples cambios para que se fusionen en un solo archivo (Noble Desktop,

2021).

Git es un software que corre localmente. Tus archivos y el historial

son guardados en tu computadora. También puede utilizarse un host para

resguardar una copia online de tus archivos y tu historial. Teniendo todo

centralizado en un lugar donde se puede subir tus cambios y descargar los

cambios de otros, permitiendo la colaboración más fácil entre

desarrolladores. Git puede automáticamente combinar cambios, así dos

personas pueden trabajar en distintas partes del mismo archivo y luego

combinar esos cambios sin perder el trabajo de uno o el otro (Noble

Desktop, 2021).

Un repositorio de Github es una carpeta con todos los archivos

necesarios del proyecto, incluyendo los archivos que marcan todas las

versiones de tu proyecto así se puede revertir los cambios en caso que se

haya cometido un error. Github también muestra quién puede colaborar y

cómo (Guthals & Haack, 2019).

“Slack es una aplicación de mensajería para empresas que conecta a

las personas con la información que necesitan. Slack transforma la manera

en que se comunican las organizaciones reuniendo a las personas para que

trabajen como un equipo unificado.” (Slack, s.f.).

Los siguientes son los beneficios de la aplicación.

Conectado. “Envía mensajes a cualquiera que esté dentro o fuera de

tu organización y colabora tal como lo harías en persona. Las personas

pueden trabajar en espacios dedicados denominados canales que reúnen a

las personas y a la información adecuadas.” (Slack, s. f.).

Este beneficio es el más importante dentro del área empresarial, ya

que es la finalidad última de la aplicación, por qué se creó Slack

básicamente. Para poder acceder a los canales dentro de la empresa se

requiere autorización por parte de los administradores.

Flexible. “Trabajo asincrónico. Cuando el trabajo se organiza en

canales, no importa tu ubicación, zona horaria o actividad. Puedes acceder a

la información que necesitas a la hora que desees" (Slack, s. f.).

26

Este beneficio se utiliza mucho dentro de MercadoLibre, en especial

para las guardias ya que dentro de un equipo se crea un canal dedicado a

las alertas y será complementario a la aplicación Opsgenie2 para poder

responder de una manera rápida ante cualquier falla que presente el

sistema.

Inclusivo. Todos los miembros de una organización tienen acceso a la

misma información que se puede buscar y está compartida. Cuando los

equipos trabajan juntos en canales, la información se puede compartir con

todos a la vez, lo que ayuda a que los equipos se mantengan alineados y

tomen decisiones más rápidamente (Slack, s. f.).

Este es otro beneficio a destacar ya que en la sección del buscador

se puede buscar fácilmente un grupo o un mensaje dentro de un grupo de

donde se esté hablando el tema de interés y poder insertarse en ese grupo

sin necesidad de autorización a no ser que esté en privado el grupo y no se

pueda ver, por lo que ahí si requiere avisar a una persona que se encuentre

dentro.

Jira “se ha convertido en una potente herramienta de gestión de

trabajo para todo tipo de casos de uso, desde la gestión de requisitos y

casos de prueba hasta el desarrollo de software ágil.” (Atlassian, s.f.).

En el caso de los equipos que usan metodologías ágiles, Jira

Software proporciona tableros de scrum y kanban listos para usar.

Los tableros son centros de gestión de tareas, donde estas se

asignan a flujos de trabajo personalizables. Asimismo, los tableros

ofrecen transparencia sobre el trabajo en equipo y visibilidad del

estado de cada elemento de trabajo. Las funciones de seguimiento

del tiempo y los informes de rendimiento en tiempo real (diagrama de

trabajo pendiente o de trabajo completado, informes de sprints,

gráficos de velocidad) permiten a los equipos supervisar de cerca su

productividad con el paso del tiempo.

2 La web oficial de Opsgenie es [https://www.atlassian.com/es/software/opsgenie]

https://www.atlassian.com/es/software/opsgenie

27

Jira Software es compatible con cualquier metodología ágil de

desarrollo de software (Atlassian, s.f.).

Los compiladores que usan los lenguajes de programación toman

todo el programa como entrada y lo traducen a un ejecutable binario en

varios pasos.

Solo podemos arrancar el ejecutable en la computadora donde lo

compilamos. Eso es porque el código binario depende del hardware y no de

la portabilidad.

El proceso de compilación sólo requiere realizarse una vez. Luego,

podemos ejecutar cuantas veces queramos el código binario.

Debido a que los compiladores procesan todos los programas, son

capaces de capturar algunos errores y advertirnos. Esos son errores de tipeo

y sintaxis. La compilación falla si están presentes (Baeldung, 2021).

En contraste, los lenguajes que utilizan intérpretes, leen y ejecutan el

programa instrucción por instrucción. Después de leer, se traduce cada

instrucción en código binario y se ejecuta.

A diferencia de los compiladores, los intérpretes no producen un

archivo binario ejecutable. Cada vez que se arranca el programa, se ejecuta

el intérprete.

Esa es la razón por la que tiene que estar presente en la RAM de la

computadora cuando corremos el programa. En contraste con los

intérpretes, necesitamos compilar durante la compilación.

Por otro lado, a diferencia de los compiladores, los intérpretes

capturan los errores en tiempos de ejecución (Baeldung, 2021).

28

Compilador Intérprete

Procesa los programas de una
Procesa los programas una instrucción

por vez

Traduce los programas a código

binario de máquina

Ejecuta el programa cargando y

traduciendo línea por línea en el momento

Se necesita solo después de que el

programa se completó

Arranca cada vez que el programa se

ejecuta

Permite la detección de algunos

errores previo a la ejecución

Todos los errores son detectados durante

la ejecución

No necesita estar presente en la

RAM antes de la ejecución

Necesita permanecer en la RAM durante

la ejecución del programa

Programas compilados

generalmente se ejecutan más

rápido

Los programas interpretados

generalmente son más lentos

Tabla 1. Nota. Fuente: Baeldung (2021)

Postman3 es una API (interfaz de programación de aplicaciones) que

construye, testea y modifica APIs. Casi cualquier funcionalidad que el

desarrollador necesite está encapsulada en esta herramienta. Es usada por

desarrolladores para desarrollar sus propias APIs de manera fácil y simple.

Tiene la habilidad de realizar diferentes tipos de solicitudes HTTP (GET,

POST, PUT, PATCH), guardando entornos para su uso, convirtiendo la API

para codear en diferentes lenguajes (como JavaScript, Python) (Hooda,

2021).

El deployment –no tiene traducción al español en IT– de software

incluye todos los pasos, procesos y actividades que se requiere para hacer

3 La web oficial de Postman es [https://www.postman.com/]

https://www.postman.com/

29

que un software o actualizaciones estén disponibles para los usuarios. Hoy

en día, los desarrolladores hacen deploy de actualizaciones, parches o

nuevas aplicaciones combinando procesos manuales y automatizados.

Algunas de las actividades de deployment incluyen el lanzamiento del

software, instalación, testeo, deployment y el monitoreo de performance

(sumo logic, s. f.).

Un framework habilita un entorno de código que contiene librerías de

bajo nivel para enfrentar problemas de código convencional. El objetivo del

framework es entregar el desarrollo de una aplicación más rápido. Esto

incluye todo lo que necesitamos para construir aplicaciones a gran escala,

tal como plantillas basadas en las mejores prácticas. Internamente, un

framework contiene gran cantidad de librerías que proveen al desarrollador

funcionalidades ya armadas, las cuales ayudan a desarrollar una aplicación

sin necesidad de tener una gran cantidad de conocimiento para codear (Roy,

2022).

Una librería es una colección de código reusable, compilado y

testeado que puede facilitar la automatización o el aumento de las

funcionalidades de una aplicación. Está diseñado para soportar tanto el

código del desarrollador como el del compilador durante el proceso de

construcción y ejecución de la aplicación. Una librería implementa muchas

funciones, variables, y parámetros (Roy, 2022).

La diferencia técnica entre framework y librería radica en lo que se

llama inversión de control.

Cuando se usa una librería, el desarrollador está a cargo del flujo de

la aplicación. Elige cuándo y dónde llamar a la librería. En cambio, cuando

usas un framework, el framework es quien está a cargo del flujo. Provee

algunos lugares donde el desarrollador puede insertar el código, pero

ejecuta el código que el desarrollador insertó tanto como necesita

(Wozniewicz, 2019).

Un patrón de diseño es una solución repetible general a un problema

común en diseño de software. A su vez, no es un diseño terminado que

directamente se transforma en código. Es una descripción o una plantilla que

30

se aplica para resolver un problema y puede ser usado en distintas

situaciones.

Un patrón de diseño puede incrementar la velocidad de los procesos

de desarrollo suministrando paradigmas de desarrollo testeado y probado.

Reutilizando patrones de diseño se pueden prevenir problemas sutiles que

pueden causar mayores problemas y ayuda a mejorar la lectura de código.

A menudo, la gente sabe aplicar ciertas técnicas de diseño de

software a ciertos problemas. Estas técnicas son difíciles de aplicar a

problemas de más alcance. Los patrones de diseño proveen soluciones

generales, documentadas en un formato que no requieren específicamente

que estén ligados a un problema en particular.

Adicionalmente, los patrones permiten a los desarrolladores

comunicarse usando nombres conocidos y entendibles para interacciones de

software. Los patrones de diseño común pueden mejorarse con el tiempo,

haciéndolos más robustos que los diseños ad-hoc (SourceMaking, s.f.).

Los microservicios son un enfoque organizacional y de arquitectura

para el desarrollo de software donde el software está compuesto en

pequeños servicios independientes que se comunican a través de APIs.

Estos servicios son propios de equipos autónomos y pequeños.

La arquitectura de los microservicios hace que las aplicaciones sean

más fáciles de escalar y más rápidas para desarrollar, permitiendo la

innovación y aceleración para nuevas funcionalidades (AWS, s.f.).

La diferencia entre arquitectura monolítica y arquitectura de

microservicios es que con el primero, todos los procesos están emparejados

estrechamente y se ejecutan como un servicio único. Esto significa que si un

proceso de una aplicación experimenta un pico de demanda, la arquitectura

entera debe escalar. Agregando o mejorando funcionalidades de la

aplicación monolítica se convierte más complejo a medida que el código

base crece. Esta complejidad limita la experimentación y hace difícil

implementar nuevas ideas. Las arquitecturas monolíticas añaden riesgo para

la disponibilidad de la aplicación porque muchos procesos dependientes y

31

emparejados estrechamente incrementan el impacto de una falla de un

proceso único.

En contraste, con la arquitectura de microservicios, una aplicación es

construida como componentes independientes que ejecutan cada proceso

de aplicación como un servicio. Estos servicios se comunican vía una

interfaz bien definida usando APIs ligeras. Los servicios son construidos

para capacidades empresariales y cada servicio lleva a cabo una función

única. Porque son ejecuciones independientes, cada servicio puede ser

actualizado, deployado y escalado para cumplir las demandas de funciones

específicas de una aplicación (AWS, s.f.).

Los microservicios son autónomos y especializados. La primera

característica hace referencia a que cada componente de servicio puede ser

desarrollado, deployado, operado y escalado sin afectar las funciones de

otros servicios. Los servicios no necesitan compartir nada de su propio

código o implementación con los otros. Cualquier comunicación entre

componentes individuales sucede via APIs bien definidas.

Por otro lado, la segunda característica se refiere a que cada servicio

es diseñado para un set de capacidades y concentrado en solucionar un

problema específico. Si los desarrolladores contribuyen más código a un

servicio con el tiempo y el servicio se vuelve complejo, puede separarse en

pequeños servicios (AWS, s.f.).

Los beneficios de los microservicios son los siguientes.

Son ágiles, los microservicios alientan una organización de equipos

pequeños e independientes que tomen posesión de sus servicios. Los

equipos actúan dentro de un contexto pequeño y entendible, y son

empoderados a trabajar más independientes y más rápidos. Esto acorta el

tiempo del ciclo de desarrollo. Se beneficia significativamente del

rendimiento agregado de la organización.

Escalabilidad flexible. Los microservicios permiten que cada servicio

sea independientemente escalable para satisfacer con la demanda de las

funcionalidades de la aplicación que soportan. Esto habilita que los equipos

adecúen el correcto tamaño de la infraestructura que se necesita, precisar la

medición del costo de una funcionalidad, y mantener disponibilidad si un

servicio experimenta un pico de demanda.

32

Fácil deployment. Los microservicios habilitan integración continua y

entrega continua, haciendo fácil intentar nuevas ideas y revertirlas si algo no

funciona. El costo bajo de fallas permite la experimentación, haciendo más

fácil actualizar código, y acelerar tiempo de mercado para nuevas

funcionalidades.

Libre de tecnología. La arquitectura de microservicios no sigue un

enfoque “talla única para todos”. Los equipos tienen la libertad de elegir la

mejor herramienta para solucionar sus problemas específicos. Como

consecuencia, los equipos construyen microservicios pueden elegir la mejor

herramienta para cada trabajo.

Código reusable. Dividiendo software en pequeños y módulos bien

definidos permite a los equipos usar funciones para múltiples propósitos. Un

servicio escrito para una cierta función puede ser usado como un bloque

para otra funcionalidad. Esto permite que una aplicación arranque por sí

misma, así como los desarrolladores pueden crear nuevas capacidades sin

crear código desde el principio.

Resiliencia. Los servicios independientes incrementan la resistencia

de una aplicación contra los fallos. En una arquitectura monolítica, si un solo

componente falla, puede causar que la aplicación entera falle. Con

microservicios, las aplicaciones controlan el servicio total de fallos

degradando la funcionalidad evitando que se rompa la aplicación entera

(AWS, s.f.).

Datadog es una herramienta que permite monitorear la infraestructura

en la nube, el hosteo en Windows y Linux, procesos de sistema, funciones

serverless –sin servidor–, y aplicaciones basadas en la nube. Puede ser

utilizado para visualizar datos, explorar métricas, administrar logs, y realizar

otras tareas diferentes.

Datadog permite recolectar métricas y juntar en tiempo real visiones

profundas acerca de la infraestructura aplicada. Aquí están los principales

casos de usos de la aplicación:

Los profesionales IT pueden crear, editar y administrar alertas y

notificaciones acerca de su infraestructura.

33

Las organizaciones pueden utilizar la herramienta APM –Application

Performance Monitoring– para reducir la latencia y eliminar errores.

Pueden testear entornos de producción y performance.

Pueden configurar múltiples integraciones que recolectan métricas,

seguimientos, y logs para enviar información a la plataforma.

Pueden usarlo como plataforma de seguridad para detectar

amenazas y configuraciones erróneas en su infraestructura.

Si utilizan Jenkins, que es un server automatizado para el deploy de

software, la aplicación puede ayudar a visualizar métricas de trabajo de

Jenkins y pasos de ejecución (Sagar, 2022).

New Relic es un software de observabilidad. Los equipos lo usan para

monitorear la performance de sus aplicaciones e infraestructura.

Parte de desarrollar una aplicación exitosa tiene que ver con

mantenerla funcionando luego de construirla.

Las dos áreas principales que los equipos necesitan visualizar es la

capa de aplicación –APM– y la capa de infraestructura –los servidores–

(Justin, 2022).

New Relic provee una serie de APIs para la recolección de

información de esas capas, visualizando esa información, y profundizando

en por qué las cosas fueron mal.

Otras buenas características que provee New Relic son monitoreo de

navegación de producto que ayuda al seguimiento de métricas comunes

como la carga de página, el tiempo gastado de página, estabilidad visual y

errores. IA para monitoreo que automáticamente analiza la performance de

la información para encontrar errores comunes y las causas de raíz. Por

último, workflows en el IDE, New Relic compró CodeStream en octubre de

2021 y lo integró en su paquete rápidamente. La esencia es básicamente

mover un montón de cosas como si se estuviera haciendo en GitHub o la

interfaz de New Relic en el entorno de desarrollo de tu elección (Justin,

2022).

Opsgenie notifica a las personas, reduce el tiempo de respuesta y

evita el estrés de alerta.

34

Opsgenie es una plataforma de administración de incidentes

modernos que aseguran que los incidentes críticos nunca se pierdan, y que

se tomen acción por las personas correctas en el tiempo más corto posible.

Opsgenie recibe alertas del sistema de monitoreo y aplicaciones

personalizadas y categorías de cada alerta basada en importancia y tiempo.

En horarios de guardia, Opsgenie asegura que las personas correctas

sean notificadas a través de múltiples canales de comunicación incluyendo

llamadas, emails, SMS, y mensajes en los celulares. Si una alerta no es

reconocida –cuando te suena una alerta hay que clickear un botón que

reconoces la alerta–, Opsgenie automáticamente la escala, asegurando que

el incidente tenga la atención requerida (Atlassian, s.f.).

Swagger permite describir la estructura de tus APIs así las

computadoras pueden leerlas. La habilidad de APIs de describir su propia

estructura es la raíz de todo lo asombroso en Swagger. Leyendo la

estructura de tu API, automáticamente podemos construir documentación

interactiva. También podemos generar automáticamente librerías para la API

en varios lenguajes y explorar otras posibilidades como pruebas

automatizadas. Swagger hace esto preguntándole a tu API si devuelve un

YAML o JSON que contenga una descripción detallada de tu API entera.

Este archivo es esencialmente una lista de recursos de tu API que se

adhiere a la especificación OpenAPI.

Se puede escribir una especificación Swagger manualmente para tu

API, o que se genere automáticamente desde las anotaciones en tu código

fuente (Swagger, s.f.).

La prueba de software es un método para verificar si el producto de

software actual cumple los requerimientos esperados y asegura que el

producto está libre de defectos. Incluye ejecución de los componentes del

sistema/software usando herramientas manuales o automatizadas para

evaluar una o más propiedades de interés. El propósito de las pruebas de

software es identificar errores, huecos o requerimientos faltantes

contrastando con los requerimientos actuales (Hamilton, 2022).

35

Las pruebas unitarias son típicamente pruebas automatizadas que

verifican que cada unidad –o partes de código aisladas– funcionen como el

desarrollo quiere.

Las pruebas unitarias son individualmente realizadas, a menudo

conocidos como “casos de prueba” que consisten en segmentos de código

que trabajan juntos para realizar una función específica. Cada prueba

unitaria evalúa el código escrito y asegura que se alinee con lo que la

función dice.

Sin embargo, las pruebas unitarias son más estructurales, quiere

decir que no interactúan con APIs subyacentes. Además, no evalúan la

interfaz de usuario o cualquier función de usuario final.

A diferencia de los otros tipos de pruebas, las unitarias no incluyen al

usuario final como objetivo, lo que hace que cada prueba unitaria sea única.

Mientras que las pruebas no se enfocan en usabilidad u otro tipo de

aspectos no funcionales de una aplicación, todavía sirven como

autenticación genuina de que se cumplan los requerimientos de usuario.

La calidad de las pruebas unitarias depende de la habilidad de prever

e implementar casos correctamente que deberían estar en el conjunto de

pruebas. La práctica común es agregar casos de pruebas que se refieren a

errores específicos identificados durante el uso de producción. Tiene sentido

implementar pruebas unitarias en partes críticas de la aplicación como el

login, pagos, entre otros.

Además, las pruebas unitarias son escritas y leídas por

desarrolladores. El punto es verificar y ver si el código funciona

apropiadamente, documentarlo, incrementar la calidad, reducir el costo de

arreglar errores y fallas productivas.

Por último, las pruebas unitarias dejan saber a los desarrolladores si

la aplicación está lista para usar o no (RevDeBug, 2021).

Una prueba de integración es una prueba modular de software.

Involucra los módulos que son lógicamente integrados, y esos módulos son

puestos a prueba como un grupo en vez de pruebas individuales.

Específicamente, las pruebas de integración tienen principalmente

foco en la comunicación de información. Estas pruebas son críticas

36

considerando que cada proyecto de software consiste típicamente en

múltiples módulos que son codeados por programadores.

La integración es usualmente llevada a cabo por testers –Gente que

realiza las pruebas– específicos a través de dos métodos: El método bottom-

up –abajo hacia arriba– y el método top-down –arriba hacia abajo–. En otras

palabras, cada tester comienza en un segmento de módulo diferente

funcionando del front al back y de back al front para asegurar consistencia

(RevDeBug, 2021).

Un IDE –Entorno de Desarrollo Integrado– permite a los

programadores consolidar los diferentes aspectos de escribir un programa

de computadora.

IDEs incrementan la productividad de los programadores combinando

actividades comunes de escritura de software en una sola aplicación:

editando código fuente, construyendo ejecutables, y debuggeando –práctica

para encontrar errores– (Codeacademy, s.f.).

Una base de datos es una colección de información organizada, así

puede ser fácilmente accesible y administrada.

Se puede organizar información en tablas, filas, columnas y con

índices para hacerlos más fácil al buscar información relevante.

Los administradores de base de datos crean una de manera que un

set de softwares acceda a la información de todos los usuarios.

El propósito principal de una base de datos es operar una larga carga

de información almacenando, recuperando y administrando información.

El lenguaje SQL –Structured Query Language– es usado para operar

la información almacenada en la base de datos. Se utiliza una estructura

cilíndrica como imagen para representar una base de datos (JavaTpoint,

s.f.).

Existen dos tipos de base de datos, las relacionales y las no

relacionales.

Una base de datos relacional almacena información en tablas. A

menudo, estas tablas comparten información entre ellas, causando una

37

relación entre ambas. De aquí es donde las bases de datos relacionales

tienen el nombre.

Una tabla usa columnas para definir la información que es

almacenada y filas para la información actual. Cada tabla tendrá una

columna que debe tener valores únicos –conocidos como clave primaria–.

Estas columnas pueden ser usadas en otras tablas, si las relaciones son

definidas entre ellas. Cuando una clave primaria de una tabla es usada en

otra tabla, esta columna en la segunda tabla es conocida como clave

foránea (MongoDB, s.f.).

En cambio, una base de datos no relacional, algunas veces llamada

NoSQL, es cualquier tipo de base de datos que no usa tablas, campos, ni

columnas con información estructurada. Fueron diseñadas con la nube en

mente, haciéndolos de mejor utilidad al escalar horizontalmente.

CARACTERÍSTICA NO RELACIONAL RELACIONAL

DISPONIBILIDAD Alta Alta

ESCALA HORIZONTAL Alta Baja

ESCALA VERTICAL Alta Alta

ALMACENAJE DE
DATOS

Optimizado para gran volumen
de información

Media a mucha
información

PERFORMANCE Alta Baja a media

SEGURIDAD Media Alta

COMPLEJIDAD Baja Media

FLEXIBILIDAD Alta Baja

Tabla 2. Nota. Fuente: Blancarte, Oscar (2017)

La escalabilidad es “la capacidad del software para adaptarse a las

necesidades de rendimiento a medida que el número de usuarios crece, las

transacciones aumentan y la base de datos empieza a sufrir degradamiento

del performance por las cargas crecientes” (Blancarte, 2017).

Podemos distinguir dos tipos de escalabilidad, vertical y horizontal. En

cuanto al primero podemos especificar que es la manera de “crecer el

hardware de uno de los nodos, es decir, aumentar el hardware por uno más

potente” (Blancarte, 2017). Este es el tipo de escalabilidad más simple ya

38

que no requiere esfuerzo y no tiene impacto en el software, requiere

solamente “respaldar y migrar los sistemas al nuevo hardware” (Blancarte,

2017), en caso que haya que reemplazar el hardware por la totalidad en vez

de añadir partes. En el siguiente gráfico se puede ver de manera visual. 

Figura 2. Escalamiento Vertical (Blancarte, 2017).

 La desventaja principal de este tipo de escalamiento es el propio

hardware, ya que llega un momento que por tema de compatibilidad no se

podrá combinar nuevo hardware con el viejo existente que tengamos. Por lo

que a futuro tendremos que reemplazar todo el hardware. Sin embargo,

“podemos combinar con el escalamiento horizontal para obtener mejores

resultados.” (Blancarte, 2017).

Ventajas Desventajas

Cambio en el hardware, sin
problemas para las aplicaciones.

Limitado por hardware

Fácil implementación
Una falla en el servidor implica que la

aplicación se detenga

Solución rápida y económica No soporta alta disponibilidad

 Hacer un cambio total de hardware es
más caro.

Tabla 3. Nota. Fuente: Blancarte, Oscar (2017)

En cambio, la escalabilidad horizontal es más potente pero más

complicada de implementar. Esto implica “tener varios servidores –conocidos

como nodos– trabajando como un todo. Se crea una red de servidores –

conocida como cluster–, con la finalidad de repartirse el trabajo entre todos

39

nodos del cluster, cuando el performance del cluster se ve afectada con el

incremento de usuarios, se añaden nuevos nodos al cluster” (Blancarte,

2017) y así sucesivamente.

 

Figura 3. Escalamiento Horizontal (Blancarte, 2017).

La manera de aplicar la escalabilidad horizontal es tener “un servidor

primario desde el cual se administra el clúster. Cada servidor del clúster

deberá tener un software que permite integrarse al clúster [...] y sobre estos

se montan las aplicaciones que queremos escalar.” (Blancarte, 2017).

Ventajas Desventajas

Crecimiento infinito Requiere mucho mantenimiento

Combinarse con escala vertical Difícil de configurar

Soporta alta disponibilidad
Requiere grandes cambios en las

aplicaciones

Si falla un nodo, los demás siguen
trabajando

Requiere infraestructura más grande

Soporta balanceo de cargas

Tabla 4. Nota. Fuente: Blancarte, Oscar (2017)

40

Metodología

Para el estudio de la presente investigación, además de las distintas

consultas bibliográficas, se llevó a cabo un cuestionario autoadministrado

hecho en Google Form4.

Entendiendo al universo como “el conjunto de población para la cual

tiene validez el conocimiento producido por la investigación. Son todos los

miembros de cualquier clase bien determinada de personas, eventos u

objetos” (Saavedra R., 2001, p. 45). En este caso, se toma como universo

las personas que trabajan dentro de empresas se aplica el Buddy System.

La muestra es una parte del universo y “debe ser representativa de

los sujetos que componen la población y suficientes para que los resultados

en efecto puedan generalizarse a toda la población o universo” (Saavedra

R., 2001, p. 45). Dado lo anterior, nuestra muestra son las personas que

trabajan dentro de MercadoLibre.

“Las Unidades de Análisis son los elementos menores y no divisibles

que componen el universo de estudio de una investigación. Sobre dichos

elementos se estudia el comportamiento de las variables” (Abritta, 2014, p.

2). De esta forma, nuestras unidades de análisis son las personas que se

encuentran trabajando en equipos de diseño con sus respectivas variables.

Las variables son los aspectos de nuestras unidades de análisis que

tendrán un valor determinado. Estas variables que nos ayudan a confirmar o

refutar nuestra hipótesis son si el buddy de la persona –nuestra unidad de

análisis– fue del mismo equipo y si fue del mismo rol que cuando ingresó.

Teniendo en cuenta las dos variables previamente mencionadas, las

mismas tendrán un valor. El valor es definido por el autor Abritta como

“diferentes opciones o alternativas que presenta la variable y adopta alguna

unidad de análisis y se puede expresar cualitativamente a través de una

clasificación por ausencia y presencia, por jerarquía u orden o sino

cuantitativamente, es decir, a través de magnitudes”. Considerando la

definición anterior de Abritta, tenemos variables cualitativas y dentro de las

mismas son dicotómicas. Las variables dicotómicas son aquellas que

“permiten tomar dos valores posibles” (QuestionPro, s.f.)

4 https://docs.google.com/forms/d/1f-4jBwa6YL7DH6wOtJgAzIzbmEIxRFvZqh7Ca7SCsL4

https://docs.google.com/forms/d/1f-4jBwa6YL7DH6wOtJgAzIzbmEIxRFvZqh7Ca7SCsL4

41

Se define indicador como “un signo (propiedad, atributo, variable)

mediante el cual nos aproximamos al conocimiento de ciertas características

de un objeto que no se pueden medir directamente (de aquí que se hable de

inferencia)” (Abritta, 2014, p. 3). Para analizar los resultados que llevan a

refutar o confirmar la hipótesis, la segunda pregunta de la sección 1, nos

indica si tuvo o no un buddy que en caso afirmativo nos demuestra que tuvo

experiencia con el Buddy System. Mientras que la sección 2, hace preguntas

en referencia a las variables en cuestión con la experiencia que tuvo.

Tomando en cuenta el resultado de la segunda sección, la persona puede

responder las preguntas de las dos variables con un enfoque basado en la

experiencia. A su vez, se hace una pregunta libre dentro de la variable para

obtener un valor agregado de por qué consideran que el buddy tiene que ser

o no del mismo equipo y/o mismo rol.

El siguiente formulario fue el utilizado para recolectar los datos

pertinentes de la muestra. Se brinda una imagen como referencia.

42

Figura 4. Cuestionario Buddy System (Abarquez Mendoza, 2022).

43

En caso que se decida realizar un experimento más acotado y se

decida realizar un análisis solo con la experiencia, es necesario realizar un

formulario en el cual solamente los que respondan acertadamente que

tuvieron un buddy también puedan responder las dos variables a analizar –

sección 4 del formulario–. Por otro lado, si la intención es realizar un

experimento acotado y más abarcativo que sólo tengan en cuenta a aquellos

que no tuvieron un buddy, se puede realizar un formulario en el cual solo se

incluya la sección 4. Por último, se puede realizar el mismo experimento que

toma en cuenta tanto la experiencia de haber tenido un buddy como aquellos

que no tuvieron.

La encuesta autoadministrada fue compartida por un canal de Slack

donde se encuentran quienes fueron algunos de mis compañeros de

bootcamp –un grupo donde hay 14 personas–, y en el grupo de Whatsapp

que tenemos en común. A su vez también fue compartida por el canal de

Slack donde se encuentran otros equipos bajo la misma dirección de

manager, donde hay actualmente 29 personas, sin embargo, en el momento

en que se compartió y se aceptaban respuestas había 27 personas. El

formulario quedó a disposición 2 semanas con el fin de obtener cierta

cantidad de respuestas.

En base a lo anterior, podemos afirmar que 41 personas recibieron el

cuestionario a completar, sin tener en cuenta las 2 personas nuevas que

ingresaron posteriormente. Teniendo en cuenta el total previamente

mencionado y que 16 fueron las que completaron el cuestionario, se puede

apreciar que el 39% enviaron sus respuestas frente al Buddy System.

Mientras que hubo un rechazo del 61% a completar el mismo.

Una vez terminado el análisis sobre cuántas personas fueron quienes

completaron el formulario. Procedemos a analizar los resultados que hubo

en cada pregunta con sus respectivas variables.

En la primera parte podemos destacar, que más de la mitad de los

profesionales tuvieron buddy. El 62.5% implica que 10 personas tuvieron

buddy al entrar a la empresa y 6 personas no.

44

Ahora bien, evaluando la imagen anterior y para que se entienda

cómo son los roles dentro de MercadoLibre, tomemos en cuenta la siguiente

tabla y ordenada por seniority ascendente previo al análisis.

Rol MercadoLibre Rol Cuestionario

Expert Expert FBM Inbound

Project Leader Project Leader

Project Leader Líder de Proyecto

Sr. Software Engineer Desarrollador Sr

Software Engineer Ssr

Software Developer Desarrollador de Software

Tabla 5. Nota. Tabla realizada en el contexto de este proyecto.

Como podemos observar, de las 6 personas tenemos 1 Expert, 2 PL,

1 Sr, 1 Ssr y 1 Developer. Es decir, cualquiera que entre a MercadoLibre

puede tener un buddy o no. Eso puede deberse a que cada equipo se

comporta de manera diferente, agregando que recién puede estar

formándose y no hay gente para asignar.

Considerando a los que tuvieron buddy, podemos ver que 60%

tuvieron uno del mismo rol, 6 personas, y 40% de diferente, las restantes 4.

A su vez 90% tuvieron buddy del mismo equipo, 9 personas, y 10% o 1

persona tuvo un buddy de un equipo diferente.

Por último, y una de las más destacadas para la presente tesis,

tenemos el porcentaje que hubiera querido un buddy. Nos da el 100%, es

decir las 6 personas que no tuvieron buddy. Desglosando las diferentes

variables que se les preguntó y analizándolas, esta es la pregunta a

considerar ya que no tuvieron buddy y por algún motivo lo vieron necesario.

En resumen, podemos afirmar que más de la mitad de los

participantes tuvieron un buddy del mismo equipo y del mismo rol. Sin

embargo, nos falta el último detalle que sería la experiencia que tuvieron. Es

decir, si bien los emparejaron así, no sabemos si el Buddy System

implementado en MercadoLibre logra ser eficiente y eficaz. Por lo que

45

recurrimos a ver el resultado de las dos últimas preguntas para poder afirmar

o refutar nuestra hipótesis.

Considerando la tabla de respuestas completa que podemos ver a

continuación, podemos destacar las siguientes cuestiones.

46

Al Figura 5. Respuestas cuestionario Buddy System (Abarquez Mendoza, 2022).

47

Algunas personas no respondieron por sí o por no. Sin embargo, al

leer las respuestas dejan en claro su postura.

Mayoritariamente respondieron a la pregunta del rol considerando el

seniority. Sin embargo, se apuntaba a entender el rol como el cargo que

ejerce. Algunos ejemplos dentro del área de diseño pueden ser diseñadora

UX, UX writer –no existe traducción ya que ese cargo es relativamente

nuevo y se lo denomina así–, desarrollador backend, desarrollador frontend.

En mi experiencia pasada, una traductora fue mi buddy, mientras que yo

daba mis primeros pasos como desarrollador.

Las preguntas libres que agregan ese valor añadido a las respuestas

de las variables, también se les hizo a los que no tuvieron buddy y querían,

debido a que saben qué tipo de preguntas le hubieran hecho a su buddy y

quién sabría responderles.

Resumiendo, las respuestas en una tabla quedarían de la siguiente

forma.

48

Rol
¿Es importante que el
buddy sea del mismo

equipo?

¿Es importante que el
buddy sea del mismo

rol?

Software Developer Sí Sí

Software Engineer No Sí

Analista semi senior Sí Sí

Ssr No No

Manager Sí Sí

analista de software Sí No

Project Leader No No

Cloud Software
Development Analyst

Sí No

Lider de Proyecto No No

Expert FBM Inbound Sí No

Desarrollador de
software

Sí Sí

UX Writer Sí Sí

Desarrollador SR Sí Sí

Software Developer Sí Sí

Software developer Sí Sí

Desarrollador
Backend

Sí Sí

Tabla 6. Nota. Tabla realizada en el contexto de este proyecto.

49

Buddy mismo equipo Buddy mismo rol Total

No No 3

No Sí 1

Sí No 3

Sí Sí 9

Tabla 7. Nota. Tabla realizada en el contexto de este proyecto.

En conclusión, podemos visualizar que el 56.25% está a favor de que,

utilizando la metodología Buddy System, el buddy asignado al nuevo

profesional sea del mismo equipo y del mismo rol. De esta manera podemos

afirmar que la hipótesis es verdadera.

De otro modo, podemos ver que 13 personas responden a que

mínimamente una de las dos variables, sea el buddy del mismo equipo o del

mismo rol, tiene que cumplirse. Esto representa un 81% del total de

personas.

A su vez podemos ver los beneficios en los cuales tiene un impacto el

buddy.

• Reconocer tareas diarias del equipo

• Adquirir conocimientos técnicos

• Solucionar dudas técnicas

• Reconocer las buenas prácticas dentro del equipo

• Disminuir tiempo de aprendizaje

50

Pieza de Diseño

Para demostrar las implicancias de un buddy, al presente informe se

le agrega un video audiovisual demostrando las cuatro situaciones que

puede haber en una empresa implementando la metodología y considerando

las dos variables a analizar en la hipótesis.

¿Cómo obtenemos la cantidad de situaciones a demostrar? Es una

pregunta que se puede hacer la persona que quiera realizar el experimento.

La fórmula para obtener la cantidad de situaciones es 2n. La fórmula

previamente dicha tiene que ver con lógica. El número 2 hace referencia a la

cantidad de valores que tienen nuestras variables –sí o no–. N hace

referencia a la cantidad de variables que tenemos en nuestro experimento.

En este caso N equivale a 2 variables, lo que da como resultado 4

situaciones.

La primera situación que vemos en el video es que al ingresante se le

asigna un buddy que no es ni del mismo equipo ni del mismo rol. Esto influye

en una incorrecta utilización del Buddy System, ya que el nuevo profesional

que se une al equipo puede llegar a tener más dudas que certezas. Es decir,

supongamos que el ingresante, siendo un desarrollador backend, quiere

saber cuáles son las herramientas tecnológicas del equipo. Ahora bien, el

buddy es alguien de recursos humanos, quien le hace la inducción y le

explica sobre los temas generales de la empresa. Sin embargo, a la hora de

responder esta pregunta, lo más probable es que le conteste una

generalización y es que las tecnologías que se utilizan en cada equipo,

dependen estrictamente de lo que prefieran sus miembros. Por otro lado,

imaginemos que el desarrollador backend se sienta en su escritorio, empieza

a trabajar y nota algo peculiar del código. Sabe que aun teniendo dudas no

va a poder preguntárselo a su buddy, recordemos que es de recursos

humanos, por lo que va a preguntarle a un miembro del equipo que pueda

entender el código.

Ahora, la segunda situación nos encuentra con que el buddy del

profesional que ingresa es del mismo equipo, pero no del mismo rol. En este

caso el buddy es un desarrollador frontend. Esto va a incrementar la

51

productividad desde el comienzo, ya que, retomando la primera pregunta de

la primera situación, el buddy va a poder contestar cuáles son las

herramientas que manejan dentro del equipo. Algunos ejemplos pueden ser

los lenguajes de programación que utilizan y las herramientas colaborativas.

Consideremos nuevamente la segunda duda que tenía el ingresante, esto es

respecto al código. Otra vez se ve el mismo problema, el buddy no va a

poder contestarle ya que, si bien es un desarrollador, no es un lenguaje de

programación que entienda. Puede verse una analogía con una persona que

sabe sólo árabe y la otra persona sabe sólo inglés, es como querer

interpretar lo que la otra persona dice.

Otra posibilidad, una tercera situación, puede ser que sea al revés de

la anterior. Es decir, el buddy sea del mismo rol, pero no del mismo equipo.

En esta ocasión, la eficacia y eficiencia va a ser de un 50% de igual modo. El

buddy va a poder responder preguntas más técnicas como la segunda, y

menos sobre cómo se comporta el equipo.

La última posibilidad es la que se propone en la hipótesis como la

manera más eficiente y eficaz de implementar el Buddy System. Haciendo

referencia a que un buddy del mismo equipo y del mismo rol va a poder

contestar ambas preguntas del ingresante. Esto va a aumentar la

productividad rápidamente, generar confianza entre ambos y formar una

alianza en los primeros meses del profesional que acaba de ingresar. Por un

lado, la confianza del nuevo miembro del equipo en poder preguntar las

dudas que tenga. Desde el lado del buddy, poder mejorar la comunicación,

demostrar que está capacitado para tener una persona a cargo, mejorar las

habilidades blandas.

El proceso para diseñar fue extenso, con cambios de ideas una tras

otra. En el blog de Domestika se nombran cinco etapas en el proceso y la

primera es la inspiración. “La inspiración es artística e intelectual. Tiene que

ver con los sentidos pero también con buscar información que pueda servir.”

(Tempone, 2020).

Por el lado inspiracional, lo que me llevó a realizar esta pieza es la

demostración de los aspectos beneficiosos de tener un buddy. A través de la

experiencia que tuve en dos ocasiones y haciendo uso de mis sentidos para

52

absorber o no el conocimiento compartido por ellos, fue una motivación de

realizar tanto la pieza artística como esta tesis.

La segunda etapa de la que habla Tempone (2020) tiene que ver con

la investigación, “se lleva adelante una acumulación y organización

sistemática de información”. En cuanto a este paso, la investigación permite

plasmar la intención de la experiencia obtenida. Es decir, recabar la

información desde el Buddy System hasta la experiencia permite poner en la

pieza artística la intención de demostrar los beneficios, el objetivo, la forma

de aplicarlo, la manera de utilizar dicha metodología como parte del proceso

de inducción.

Como tercera etapa del proceso de diseño, encontramos la ideación.

Respecto a ello, Tempone (2020) explica que no solo es “simplemente tener

una idea fantástica sino más de diez buenas ideas y cien malas ideas”. En

sintonía con lo dicho al principio de las etapas, la idea tuvo varias

mutaciones a lo largo del proceso. Sin embargo, la que se decidió es aquella

que represente visualmente en cómo un buddy puede mejorar la

productividad de la persona que entra al equipo. Adicionalmente, se

representa los casos en que fallaría una mala aplicación de la metodología.

La cuarta etapa se denomina verificación, Tampone (2020) nos dice

que en ella “contrastamos nuestras ideas del proceso de ideación con lo que

descubrimos en la investigación.”. Esto nos permite verificar que la pieza

artística se acople a lo del presente informe.

La última y la más importante, es la ejecución del diseño. En esta

etapa es tomar la idea que mejor funcione y comprometerse con ella

(Tempone, 2020).

Se eligió realizar un audiovisual mostrando la interacción del nuevo

profesional ingresante y el buddy asignado. Dado el análisis que se realizó

previamente se sabía de antemano que se iban a recurrir a cuatro

situaciones en las cuáles había que demostrar en qué preguntas podría fallar

el buddy, de esta manera se podía determinar en cuál de todas las

situaciones el buddy era más eficiente y eficaz. Al mismo tiempo, los análisis

de las respuestas que hubo, permiten demostrar esa transferencia de

53

conocimiento como el principal beneficio que puede haber si hay una

persona con experiencia en el mismo rol.

El audiovisual se basó en seguir una serie de preguntas, entre las

cuáles fueron las siguientes, aunque no todas fueron incluidas a fin de

mantener el video acotado y que abarque quince minutos como máximo.

• ¿Qué tecnologías se manejan en el equipo?

• ¿Qué es Success Factors?

• ¿Qué herramientas se usan para la comunicación interna?

• ¿Qué repositorio se usa en el equipo?

• ¿El circuit braker es un patrón de diseño?

• ¿Cómo es el tema de la escalabilidad horizontal y vertical que

se utiliza?

• ¿Qué patrones de diseño se utilizan en el equipo?

• ¿Cuál es la diferencia entre guardia pasiva y guardia activa?

• ¿Por qué se utiliza Datadog y New Relic? ¿Y Kibana?

• ¿Hay algún equipo que administre la base de datos?

Una vez que se realizó el video respondiendo a esas preguntas. Se utilizó

Adobe Premiere para realizar la edición de a partes. Se fueron acomodando

las preguntas en base a las cuatro situaciones; diferente equipo y diferente

rol, diferente equipo y mismo rol, mismo equipo y diferente rol, mismo equipo

y mismo rol. A su vez se agregaron placas que identifiquen la situación con

las preguntas que se van a preguntar. Así como también se agregaron

efectos de sonido con las transiciones en algunos casos. Por último, se

agregaron unas pocas imágenes donde era posible incorporarlas, para

demostrar la herramienta tecnológica de la que se estaba hablando. Por

último, se agregó música, imágenes y voz en off.

En el siguiente link se puede ver el audiovisual5. Mientras que en el siguiente

link se puede ver el audiovisual corto6 para la defensa de la presente tesis.

5 https://drive.google.com/file/d/1oJXFFig5xwnx3qKhHmSrL--y1wHK984R/view

6 https://drive.google.com/file/d/1VWf5onKPw3TGyuQe8K_Sdj4GCHeDvlB_/view

https://drive.google.com/file/d/1oJXFFig5xwnx3qKhHmSrL--y1wHK984R/view
https://drive.google.com/file/d/1VWf5onKPw3TGyuQe8K_Sdj4GCHeDvlB_/view

54

Conclusiones

En base a todo lo expuesto durante el presente informe, podemos

concluir que la hipótesis que se dispuso experimentar fue realizada con

éxito, demostrando que la mejor forma de asignar un buddy es que sea del

equipo perteneciente al nuevo profesional y que posee el mismo rol. Esto

aumentará la productividad, el desarrollo mutuo entre ambas personas

emparejadas, resultando en un amplio beneficio para el equipo. A su vez,

quien tuvo el buddy asignado tiene la experiencia propia de haber pasado

por esa situación, desencadenando en que puede convertirse en uno para

otra persona.

El análisis previo tuvo como punto de partida dos experiencias

diferentes. Lo que me permitió preguntarme para qué sirve y cómo tiene que

ser un buen buddy. Pudiendo realizar el experimento con mis colegas dentro

de la empresa, las respuestas no sólo me permitieron ver que cada uno que

tuvo un buddy pasó una experiencia gratificante, sino que aquellos que no

tuvieron vieron la necesidad de tener uno.

Un tema a destacar es que, gracias a las preguntas libres del

formulario, una de las respuestas me demostró que una persona tuvo 2

buddies. Esto favoreció los resultados obtenidos debido a que en las fuentes

de información nunca se habla sobre cuántos buddies pueden asignarse a

una persona o si un buddy puede tener más de una persona a cargo.

La pieza de diseño es un audiovisual que no se tuvo en consideración

ni el seniority de la persona que hace de buddy, ni tampoco su experiencia

como desarrollador, ni la experiencia dentro de la empresa. La principal

crítica que se le puede asignar es no haberse realizado con diferentes

personas que cumplieran con las cuatro situaciones para realizar un

experimento más realista. Sin embargo, las respuestas que me brindó la

persona que actúa como buddy están un poco más profundizadas ya que

posee una experiencia de 3 años dentro de la empresa y las preguntas

fueron más generalizadas.

Adicionalmente hubiera sido interesante mostrar cómo es la relación

de dos profesionales de desarrollo mostrando esa interacción a la hora de

programar. Es decir, mostrar un poco de pair-programming con el buddy ya

55

que a veces requiere algo más puntual en el área de desarrollo como un

vistazo por las carpetas y cómo es todo lo que se emplea en el código

fuente. En una parte dada del audiovisual, se nombra el circuit breaker como

patrón de diseño y hubiera sido interesante verlo desde el punto de vista del

código, pero no es posible compartir código alguno y requiere tiempo para

poder realizar un proyecto en el cual esté codeado y ambas personas estén

al tanto de lo mismo como para realizar una demostración.

A su vez hay que destacar que, si bien las preguntas fueron

generales, la experiencia de Leandro Devoto permitió una respuesta muy

completa en cuanto al área de backend permitiendo también la transferencia

de conocimiento para todo aquel que la escuche.

Finalizando con el presente informe, se agregan algunos detalles a

tener en cuenta para todo aquel que quiera realizar el experimento a futuro.

A su vez, estas consideraciones pueden favorecer la presente investigación.

Una posible variable a analizar puede ser con respecto al seniority de

la unidad de análisis. Esto permitiría discriminar, si además de que el buddy

sea del mismo equipo y del mismo rol, en si es necesario que el seniority sea

del mismo ingresante o superior.

Otra posible variable para profundizar la hipótesis, tiene que ver con

respecto a no limitar con saber si tuvo un buddy solo dentro de la empresa

del caso de uso. Preguntándole a la persona si alguna vez tuvo un buddy en

MercadoLibre u otra empresa, permitiría tener en consideración las

respuestas libres del formulario empleado para la obtención de datos.

De acuerdo al formulario mostrado para la recolección de datos, una

mejora puede realizarse con respecto a identificar el rol de las personas. Se

propone cambiar el texto libre por una lista de selección, agregando como

última opción otros, y que la misma persona decida agregar su cargo. Esto

ayudaría en el análisis ya que se unificarán algunos cargos y se generaría

una estadística automática.

56

Referencias

Abritta, Guillermo Pablo. (2014). Noción y estructura del dato [Archivo PDF].

Recuperado el 04 de julio de 2022 de http://metodos-

comunicacion.sociales.uba.ar/wp-

content/uploads/sites/219/2014/09/Abritta.pdf

Atlassian. Understanding Modern Incident Management with Opsgenie

[Entendiendo la administracion de incidentes modernos con

Opsgenie]. Recuperado el 04 de julio de 2022 de

https://www.atlassian.com/software/opsgenie/what-is-opsgenie

Atlassian. ¿Para qué sirve Jira? Recuperado el 04 de julio de 2022 de

https://www.atlassian.com/es/software/jira/guides/use-cases/what-is-

jira-used-for#jira-for-agile-teams

Aulab. Las principales herramientas de un programador Web. Recuperado el

04 de julio de 2022 de https://aulab.es/noticia/76/las-principales-

herramientas-de-un-programador-web

AWS. What are Microservices? [¿Qué son los microservicios?]. Recuperado

el 04 de julio de 2022 de https://aws.amazon.com/microservices/

Ayushharwani2011. (2 de noviembre 2020). Pair Programming [Pair-

programming]. Recuperado el 04 de julio de 2022 de

https://www.geeksforgeeks.org/pair-programming/

Baeldung. Compiled vs. Interpreted Programming Languages [Lenguaje de

programación compilados vs interpretados]. Recuperado el 04 de julio

de 2022 de https://www.baeldung.com/cs/compiled-vs-interpreted-

languages

Blancarte, Oscar. (7 de marzo de 2017). Escalabilidad Horizontal y Vertical.

Oscar Blancarte Blog. Recuperado el 04 de julio de 2022 de

https://www.oscarblancarteblog.com/2017/03/07/escalabilidad-

horizontal-y-vertical/

Choudhary, Sneh Ratna. (09 de diciembre de 2021). How and Why to Create

an Onboarding Buddy Program [Cómo y Porqué crear un programa

inductive de buddy]. Zavvy. Recuperado el 04 de julio de 2022 de

https://www.zavvy.io/blog/onboarding-buddy-program

http://metodos-comunicacion.sociales.uba.ar/wp-content/uploads/sites/219/2014/09/Abritta.pdf
http://metodos-comunicacion.sociales.uba.ar/wp-content/uploads/sites/219/2014/09/Abritta.pdf
http://metodos-comunicacion.sociales.uba.ar/wp-content/uploads/sites/219/2014/09/Abritta.pdf
https://www.atlassian.com/software/opsgenie/what-is-opsgenie
https://www.atlassian.com/es/software/jira/guides/use-cases/what-is-jira-used-for#jira-for-agile-teams
https://www.atlassian.com/es/software/jira/guides/use-cases/what-is-jira-used-for#jira-for-agile-teams
https://aulab.es/noticia/76/las-principales-herramientas-de-un-programador-web
https://aulab.es/noticia/76/las-principales-herramientas-de-un-programador-web
https://aws.amazon.com/microservices/
https://www.geeksforgeeks.org/pair-programming/
https://www.baeldung.com/cs/compiled-vs-interpreted-languages
https://www.baeldung.com/cs/compiled-vs-interpreted-languages
https://www.oscarblancarteblog.com/2017/03/07/escalabilidad-horizontal-y-vertical/
https://www.oscarblancarteblog.com/2017/03/07/escalabilidad-horizontal-y-vertical/
https://www.zavvy.io/blog/onboarding-buddy-program

57

Codeacademy. What Is an IDE? [¿Qué es un IDE?]. Recuperado el 04 de

julio de 2022 de https://www.codecademy.com/article/what-is-an-ide

Codementor. Pair Programming: What, Why, and How [Pair-programming:

Qué, Por qué, Cómo]. Recuperado el 04 de julio de 2022 de

https://www.codementor.io/pair-programming

COR. Roles Fundamentales en un Equipo de Desarrollo de Software.

Recuperado el 04 de julio de 2022 de

https://projectcor.com/es/blog/roles-fundamentales-en-un-equipo-de-

desarrollo-de-software/

Evan Leybourn. (27 de junio 2013). Directing The Agile Organization: A Lean

Approach To Business Management [Dirigiendo una organización ágil:

Un enfoque inclinado hacia la administración empresarial].

Recuperado el 04 de julio de 2022 de

https://theagiledirector.com/images/IntroductiontoScrum-

coursenotes.pdf

Guthals, Sarah & Haack, Phil. (2019). GitHub For Dummies [Github para

tontos]. John Wiley & Sons, Inc.

Hamilton, Thomas. (30 de abril de 2022). What is Software Testing?

Definition, Basics & Types in Software Engineering [¿Qué es prueba

de software? Definición, principios basicos y tipos en ingeniería de

software]. Recuperado el 04 de julio de 2022 de

https://www.guru99.com/software-testing-introduction-importance.html

Hooda, Parikshit. (6 de agosto de 2021). Introduction to Postman for API

Development [Introducción a Postman para desarrollar una API].

Recuperado el 04 de julio de 2022 de

https://www.geeksforgeeks.org/introduction-postman-api-

development/

humanfusion. (09 de junio de 2019). Every New Employee Needs an

Onboarding "Buddy" (Part 1) [Archivo de Video]. Youtube.

Recuperado el 04 de julio de 2022 de

https://www.youtube.com/watch?v=1TANfL5hic8

Indeed. Creating a Buddy System in the Workplace [Creando un Sistema de

Buddy en el trabajo]. Recuperado el 04 de julio de 2022 de

https://www.indeed.com/hire/c/info/buddy-system

https://www.codecademy.com/article/what-is-an-ide
https://www.codementor.io/pair-programming
https://projectcor.com/es/blog/roles-fundamentales-en-un-equipo-de-desarrollo-de-software/
https://projectcor.com/es/blog/roles-fundamentales-en-un-equipo-de-desarrollo-de-software/
https://theagiledirector.com/images/IntroductiontoScrum-coursenotes.pdf
https://theagiledirector.com/images/IntroductiontoScrum-coursenotes.pdf
https://www.guru99.com/software-testing-introduction-importance.html
https://www.geeksforgeeks.org/introduction-postman-api-development/
https://www.geeksforgeeks.org/introduction-postman-api-development/
https://www.youtube.com/watch?v=1TANfL5hic8
https://www.indeed.com/hire/c/info/buddy-system

58

Indeed Editorial Team. (23 de diciembre de 2020). Project Leader vs. Project

Manager: Definitions and Key Differences. Indeed. Recuperado el 04

de julio de 2022 de https://www.indeed.com/career-advice/finding-a-

job/project-leader-vs-project-manager

JavaTpoint. Database [Base de datos]. Recuperado el 04 de julio de 2022 de

https://www.javatpoint.com/what-is-database

Justin. (11 de enero de 2022). What does New Relic do? [¿Qué hace New

Relic?]. Technically. Recuperado el 04 de julio de 2022 de

https://technically.substack.com/p/what-does-newrelic-do?s=r

Lindley, Cody. (2019). Front-end Developer Handbook 2019 [manual de

desarrollador frontend 2019]. Frontend Masters.

MercadoLibre. Ecosistema Mercado Libre: el valor de pensar todas las

soluciones. Recuperado el 04 de julio de 2022 de

https://www.mercadolibre.com.ar/institucional/hacemos/ecosistema-

mercado-libre

MongoDB. Relational vs. Non-Relational Databases [Base de datos

relacionales vs no relacionales]. Recuperado el 04 de julio de 2022 de

https://www.mongodb.com/compare/relational-vs-non-relational-

databases

Mullins, Laurie J. (2005). Management and Organisational behaviour

[Administración y comportamiento organizacional]. Pearson Education

Limited.

Myers, Dominic. (2020). FRONT-END DEVELOPER [Desarrollador frontend].

Learning & Development Ltd.

Osiri, David. (2020). PRACTICAL STEPS TO FINDING A MENTOR  [Pasos

prácticos para encontrar un mentor]. Independently.

Sagar. (12 de mayo de 2022). What is Datadog – The Ultimate Guide [Qué

es Datadog – La última guía]. Petri. Recuperado el 04 de julio de 2022

de https://petri.com/what-is-datadog/

QuestionPro. Cuáles son los tipos de variables en una investigación.

Recuperado el 04 de julio de 2022 de

https://www.questionpro.com/blog/es/tipos-de-variables-en-una-

investigacion/

https://www.indeed.com/career-advice/finding-a-job/project-leader-vs-project-manager
https://www.indeed.com/career-advice/finding-a-job/project-leader-vs-project-manager
https://www.javatpoint.com/what-is-database
https://technically.substack.com/p/what-does-newrelic-do?s=r
https://www.mercadolibre.com.ar/institucional/hacemos/ecosistema-mercado-libre
https://www.mercadolibre.com.ar/institucional/hacemos/ecosistema-mercado-libre
https://www.mongodb.com/compare/relational-vs-non-relational-databases
https://www.mongodb.com/compare/relational-vs-non-relational-databases
https://petri.com/what-is-datadog/
https://www.questionpro.com/blog/es/tipos-de-variables-en-una-investigacion/
https://www.questionpro.com/blog/es/tipos-de-variables-en-una-investigacion/

59

Ramotion (02 de junio de 2021). Ultimate Back End Developer Guide [La

ultima guía de desarrollador Backend]. Recuperado el 04 de julio de

2022 de https://www.ramotion.com/blog/back-end-developer-guide/

RevDeBug. (15 de abril de 2021). Unit Tests Vs. Integration Tests [Pruebas

unitarias vs pruebas de integración]. Recuperado el 04 de julio de

2022 de https://revdebug.com/blog/unit-tests-vs-integration-tests/

Roy, Sandip. 1 de enero de 2022. The Difference Between a Framework and

a Library [La diferencia entre un framework y una librería].

Recuperado el 04 de julio de 2022 de

https://www.baeldung.com/cs/framework-vs-library

Sánchez, C. (08 de febrero de 2019). Títulos y Subtítulos. Normas APA (7ma

edición). Recuperado el 04 de julio de 2022 de https://normas-

apa.org/formato/titulos-y-subtitulos/

Sánchez, C. (08 de febrero de 2019). ¿Cómo citar una fuente de un idioma

extranjero y su traducción? Normas APA (7ma edición). Recuperado

el 04 de julio de 2022 de https://normas-apa.org/citas/como-citar-una-

fuente-de-un-idioma-extranjero-y-su-traduccion/

Sánchez, C. (24 de enero de 2020). Referencias APA. Normas APA (7ma

edición). Recuperado el 04 de julio de 2022 de https://normas-

apa.org/referencias/

Sánchez, C. (05 de mayo de 2020). Citar un Blog – Referencias

Bibliográficas. Normas APA (7ma edición). Recuperado el 04 de julio

de 2022 de https://normas-apa.org/referencias/citar-un-blog/

Sánchez, C. (29 de enero de 2020). Tablas. Normas APA (7ma edición).

Recuperado el 04 de julio de 2022 de https://normas-

apa.org/estructura/tablas/

Saavedra R., Manuel S. (2001). Elaboración de tesis profesionales. Pax

México.

Slack. ¿Qué es Slack? Recuperado el 04 de julio de 2022 de

https://slack.com/intl/es-ar/help/articles/115004071768-

%C2%BFQu%C3%A9-es-Slack-

SourceMaking. Design Patterns [Patrones de diseño]. Recuperado el 04 de

julio de 2022 de

https://sourcemaking.com/design_patterns#:~:text=In%20software%2

https://www.ramotion.com/blog/back-end-developer-guide/
https://revdebug.com/blog/unit-tests-vs-integration-tests/
https://www.baeldung.com/cs/framework-vs-library
https://normas-apa.org/formato/titulos-y-subtitulos/
https://normas-apa.org/formato/titulos-y-subtitulos/
https://normas-apa.org/citas/como-citar-una-fuente-de-un-idioma-extranjero-y-su-traduccion/
https://normas-apa.org/citas/como-citar-una-fuente-de-un-idioma-extranjero-y-su-traduccion/
https://normas-apa.org/referencias/
https://normas-apa.org/referencias/
https://normas-apa.org/referencias/citar-un-blog/
https://normas-apa.org/estructura/tablas/
https://normas-apa.org/estructura/tablas/
https://slack.com/intl/es-ar/help/articles/115004071768-%C2%BFQu%C3%A9-es-Slack-
https://slack.com/intl/es-ar/help/articles/115004071768-%C2%BFQu%C3%A9-es-Slack-
https://sourcemaking.com/design_patterns#:~:text=In%20software%20engineering%2C%20a%20design,used%20in%20many%20different%20situations

60

0engineering%2C%20a%20design,used%20in%20many%20different

%20situations.

Sumo logic. Software Deployment [Deployment de software]. Recuperado el

04 de julio de 2022 de https://www.sumologic.com/glossary/software-

deployment/

Swagger. What Is Swagger? [¿Qué es Swagger?]. Recuperado el 04 de julio

de 2022 de https://swagger.io/docs/specification/2-0/what-is-swagger/

Tempone, Denise. (05 de enero de 2022). ¿Qué es el proceso de diseño y

cuales son los diferentes pasos? Domestika. Recuperado el 04 de

julio de 2022 de https://www.domestika.org/es/blog/9704-que-es-el-

proceso-de-diseno-y-cuales-son-los-diferentes-pasos

Wozniewicz, Brandon. 1 de febrero de 2019. The Difference Between a

Framework and a Library [La diferencia entre un framework y una

librería]. Recuperado el 04 de julio de 2022 de

https://www.freecodecamp.org/news/the-difference-between-a-

framework-and-a-library-bd133054023f/

https://sourcemaking.com/design_patterns#:~:text=In%20software%20engineering%2C%20a%20design,used%20in%20many%20different%20situations
https://sourcemaking.com/design_patterns#:~:text=In%20software%20engineering%2C%20a%20design,used%20in%20many%20different%20situations
https://www.sumologic.com/glossary/software-deployment/
https://www.sumologic.com/glossary/software-deployment/
https://swagger.io/docs/specification/2-0/what-is-swagger/
https://www.domestika.org/es/blog/9704-que-es-el-proceso-de-diseno-y-cuales-son-los-diferentes-pasos
https://www.domestika.org/es/blog/9704-que-es-el-proceso-de-diseno-y-cuales-son-los-diferentes-pasos
https://www.freecodecamp.org/news/the-difference-between-a-framework-and-a-library-bd133054023f/
https://www.freecodecamp.org/news/the-difference-between-a-framework-and-a-library-bd133054023f/

